首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We prepared monospecific antisera in rabbits against purified rat short-, medium-, and long-chain acyl-CoA dehydrogenases, isovaleryl-CoA dehydrogenase, and ETF and tested the immunocross-reactivity to the corresponding human enzymes. Each antiserum specifically reacted with the corresponding human enzyme. When immunoprecipitates were analyzed by SDS-PAGE, the mobilities of all the human acyl-CoA dehydrogenases and ETF subunits were identical to those of the rat counterparts with a single exception. Human medium-chain acyl-CoA dehydrogenase had a mobility on SDS-PAGE slightly slower than that of rat medium-chain acyl-CoA dehydrogenase, suggesting that human medium-chain acyl-CoA dehydrogenase was 1 kDa larger than the rat counterpart. The immunocross-reactivity of the antisera, raised against the rat acyl-CoA dehydrogenases and ETF to the human counterpart, provide useful tools for the study of mutant enzymes in cells from patients with a genetic defect of acyl-CoA dehydrogenases of ETF.  相似文献   

2.
K Tanaka  Y Ikeda  Y Matsubara  D B Hyman 《Enzyme》1987,38(1-4):91-107
Our early study of isovaleric acidemia (IVA) indicated that isovaleryl-CoA is dehydrogenated by an enzyme that is specific for isovaleryl-CoA. We subsequently identified and purified isovaleryl-CoA dehydrogenase (IVD) and 2-methyl-branched chain acyl-CoA dehydrogenase, which were previously unknown. We also purified and characterized three previously known acyl-CoA dehydrogenases. Five acyl-CoA dehydrogenases share similar molecular features and reaction mechanisms, indicating a close evolutionary relationship. Using the tritium release assay and [35S]methionine labeling/immunoprecipitation, we showed that IVA is due to a mutation of IVD. We also demonstrated that there are at least 5 distinct forms of mutant IVD, indicating an extensive molecular heterogeneity. Furthermore, we cloned cDNAs encoding IVD and medium-chain acyl-CoA dehydrogenases. The comparison of their complete primary sequences revealed a high degree of homology, indicating that these enzymes belong to a gene family, the acyl-CoA dehydrogenase family.  相似文献   

3.
4.
A fluorimetric, ETF-linked procedure to determine activities of acyl-CoA dehydrogenase in cultured human fibroblasts is described. The assay readily distinguishes between cell lines deficient in medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, isovaleryl-CoA dehydrogenase, and controls, and may allow for the diagnosis of heterozygous carriers of these disorders. The method has been made feasible with the development of rapid and efficient procedures to isolate ETF, and offers several advantages over procedures that are currently employed.  相似文献   

5.
The acyl-CoA dehydrogenases are a family of flavin adenine dinucleotide-containing enzymes that catalyze the first step in the beta-oxidation of fatty acids and catabolism of some amino acids. They exhibit high sequence identity and yet are quite specific in their substrate binding. Short chain acyl-CoA dehydrogenase has maximal activity toward butyryl-CoA and negligible activity toward substrates longer than octanoyl-CoA. The crystal structure of rat short chain acyl-CoA dehydrogenase complexed with the inhibitor acetoacetyl-CoA has been determined at 2.25 A resolution. Short chain acyl-CoA dehydrogenase is a homotetramer with a subunit mass of 43 kDa and crystallizes in the space group P321 with a = 143.61 A and c = 77.46 A. There are two monomers in the asymmetric unit. The overall structure of short chain acyl-CoA dehydrogenase is very similar to those of medium chain acyl-CoA dehydrogenase, isovaleryl-CoA dehydrogenase, and bacterial short chain acyl-CoA dehydrogenase with a three-domain structure composed of N- and C-terminal alpha-helical domains separated by a beta-sheet domain. Comparison to other acyl-CoA dehydrogenases has provided additional insight into the basis of substrate specificity and the nature of the oxidase activity in this enzyme family. Ten reported pathogenic human mutations and two polymorphisms have been mapped onto the structure of short chain acyl-CoA dehydrogenase. None of the mutations directly affect the binding cavity or intersubunit interactions.  相似文献   

6.
In rat liver hypo-osmotically treated mitochondria, 2-mercaptoacetate inhibits respiration induced by palmitoyl-CoA, octanoate or butyryl-CoA only when the reaction medium is supplemented with ATP. Under this condition, NADH-stimulated respiration is not affected. In liver mitochondrial matrix, the presence of ATP is also required to observe a 2-mercaptoacetate-induced inhibition of acyl-CoA dehydrogenases tested with palmitoyl-CoA, butyryl-CoA or isovaleryl-CoA as substrate. As the oxidation of these substrates is also inhibited by the incubation medium resulting from the reaction of 2-mercaptoacetate with acetyl-CoA synthase, with conditions under which 2-mercaptoacetate has no effect, 2-mercaptoacetyl-CoA seems to be the likely inhibitory metabolite responsible for the effects of 2-mercaptoacetate. Kinetic experiments show that the main effect of the 2-mercaptoacetate-active metabolite is to decrease the affinities of fatty acyl-CoA dehydrogenases towards palmitoyl-CoA or butyryl-CoA and of isovaleryl-CoA dehydrogenase towards isovaleryl-CoA. Addition of N-ethylmaleimide to mitochondrial matrix pre-exposed to 2-mercaptoacetate results in the immediate reversion of the inhibitions of palmitoyl-CoA and isovaleryl-CoA dehydrogenations and in a delayed reversion of butyryl-CoA dehydrogenation. These results led us to conclude that (i) the ATP-dependent conversion of 2-mercaptoacetate into an inhibitory metabolite takes place in the liver mitochondrial matrix and (ii) the three fatty acyl-CoA dehydrogenases and isovaleryl-CoA dehydrogenase are mainly competitively inhibited by this compound. Finally, the present study also suggests that the inhibitory metabolite of 2-mercaptoacetate may bind non-specifically to, or induce conformational changes at, the acyl-CoA binding sites of these dehydrogenases.  相似文献   

7.
Glutaryl-coenzyme A (CoA) dehydrogenase and the electron transfer flavoprotein (ETF) of Paracoccus denitrificans were purified to homogeneity from cells grown with glutaric acid as the carbon source. Glutaryl-CoA dehydrogenase had a molecular weight of 180,000 and was made up of four identical subunits with molecular weights of about 43,000 each of which contained one flavin adenine dinucleotide molecule. The enzyme catalyzed an oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA, was maximally stable at pH 5.0, and lost activity readily at pH values above 7.0. The enzyme had a pH optimum in the range of 8.0 to 8.5, a catalytic center activity of about 960 min-1, and apparent Michaelis constants for glutaryl-CoA and pig liver ETF of about 1.2 and 2.5 microM, respectively. P. denitrificans ETF had a visible spectrum identical to that of pig liver ETF and was made up of two subunits, only one of which contained a flavin adenine dinucleotide molecule. The isoelectric point of P. denitrificans ETF was 4.45 compared with 6.8 for pig liver ETF. P. denitrificans ETF accepted electrons not only from P. denitrificans glutaryl-CoA dehydrogenase, but also from the pig liver butyryl-CoA and octanoyl-CoA dehydrogenases. The apparent Vmax was of similar magnitude with either pig liver or P. denitrificans ETF as an electron acceptor for these dehydrogenases. P. denitrificans glutaryl-CoA dehydrogenase and ETF were used to assay for the reduction of ubiquinone 1 by ETF-Q oxidoreductase in cholate extracts of P. denitrificans membranes. The ETF-Q oxidoreductase from P. denitrificans could accept electrons from either the bacterial or the pig liver ETF. In either case, the apparent Km for ETF was infinitely high. P. denitrificans ETF-Q oxidoreductase was purified from contaminating paramagnets, and the resultant preparation had electron paramagnetic resonance signals at 2.081, 1.938, and 1.879 G, similar to those of the mitochondrial enzyme.  相似文献   

8.
The mechanisms of the initial interactions of three rat liver acyl-CoA dehydrogenases (short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases) and their fatty acyl-CoA substrate were studied using enzyme-catalyzed deuterium exchange. The reaction products were identified and quantitated using mass spectroscopy and 1H-NMR. When fatty acyl-CoA substrates were incubated with catalytic amounts of acyl-CoA dehydrogenase in D2O in the absence of an electron acceptor, a rapid monodeuteration of the substrate occurred to replace one of the prochiral C-2 hydrogens, while no C-3 hydrogens were exchanged with deuterium. The C-2 monodeuteration proceeded to the extent of 80% of the total amount of substrate added at 90 min and almost to completion at 120 min. The pKa values and optimum pD values for the C-2 proton/deuteron exchange reactions were 6.0 and 7.5, respectively, for each of the three acyl-CoA dehydrogenases. The apparent turnover numbers were 3.0, 3.3, and 0.5 s-1 for short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases, respectively. These results provide the first direct evidence for carbanion formation via abstraction of a C-2 hydrogen by a base in the enzyme, as the first step of the catalytic pathway of acyl-CoA dehydrogenation. When the acyl-CoA dehydrogenases were reacted with moderate excesses of acyl-CoA substrates in D2O in the absence of an electron acceptor, maximum bleaching of the FAD absorbance and the appearance of the long wavelength absorbance, attributed to a charge transfer complex, were observed. However, the dehydrogenation products, 2-enoyl-CoAs, were produced either not at all or in an amount which represented only a minor fraction of the amount of the enzyme added, while the substrates in the enzyme-substrate complexes rapidly turned over as indicated by the extensive monodeuteration which concomitantly occurred. Unlike previous hypothesis, these results indicate that the hydride ion transfer from C-3 of the substrate to the enzyme-FAD is not yet complete in the charge-transfer complex. The transfer of the hydride ion to alloxazine N-5 and the release of products are completed only in the presence of electron-transfer flavoprotein or another suitable electron acceptor.  相似文献   

9.
Inactivation of five distinct acyl-CoA dehydrogenases by (methylenecyclopropyl)acetyl-CoA (MCPA-CoA), the toxic metabolite of hypoglycin from unripe ackee fruit, was investigated using purified enzyme preparations. Short-chain acyl-CoA (SCADH), medium-chain acyl-CoA (MCADH) and isovaleryl-CoA (IVDH) dehydrogenases were severely and irreversibly inactivated by MCPA-CoA, while 2-methyl-branched chain acyl-CoA dehydrogenase (2-meBCADH) was only slowly and mildly inactivated. Long-chain acyl-CoA dehydrogenase (LCADH) was not significantly inactivated, even after prolonged incubation with MCPA-CoA. Inactivation of SCADH, MCADH and IVDH was effectively prevented by the addition of substrate. This mode of inactivation by MCPA-CoA explains the urinary metabolite profile in hypoglycin treated-rats, which includes large amounts of metabolites from fatty acids and leucine, and relatively small amounts of those from valine and isoleucine. Spectrophotometric titration of SCADH and MCADH with MCPA-CoA, together with the protective effects of substrate, indicates that MCPA-CoA is acted upon by, and exerts in turn irreversible inactivation of, SCADH and MCADH, confirming that MCPA-CoA is a suicide inhibitor (Wenz et al. (1981) J. Biol. Chem. 256, 9809-9812). Spectrophotometric titration data of LCADH and MCPA-CoA is typical of non-reacting CoA ester.  相似文献   

10.
The FAD-containing short-chain acyl-CoA dehydrogenase was purified from ox liver mitochondria by using (NH4)2SO4 fractionation, DEAE-Sephadex A-50 and chromatofocusing on PBE 94 resin. The enzyme is a tetramer, with a native Mr of approx. 162 000 and a subunit Mr of 41 000. Short-chain acyl-CoA dehydrogenases are usually isolated in a green form. The chromatofocusing step in the purification presented here partially resolved the enzyme into a green form and a yellow form. In the dye-mediated assay system, the enzyme exhibited optimal activity towards 50 microM-butyryl-CoA at pH 7.1. Kinetic parameters were also determined for a number of other straight-chain acyl-CoA substrates. The u.v.- and visible-absorption characteristics of the native forms of the enzyme are described, together with complexes formed by addition of butyryl-CoA, acetoacetyl-CoA and CoA persulphide.  相似文献   

11.
The acyl-CoA dehydrogenases are a family of mitochondrial flavoproteins involved in the catabolism of fatty and amino acids. Isobutyryl-CoA dehydrogenase (IBD) is involved in the catabolism of valine and catalyzes the conversion of isobutyryl-CoA to methacrylyl-CoA. The crystal structure of IBD with and without substrate has been determined to 1.76-A resolution. The asymmetric unit contains a homotetramer with substrate/product bound in two monomers. The overall structure of IBD is similar to those of previously determined acyl-CoA dehydrogenases and consists of an NH2-terminal alpha-helical domain, a medial beta-strand domain and a C-terminal alpha-helical domain. The enzyme-bound ligand has been modeled in as the reaction product, methacrylyl-CoA. The location of Glu-376 with respect to the C-2-C-3 of the bound product and FAD confirms Glu-376 to be the catalytic base. IBD has a shorter and wider substrate-binding cavity relative to short-chain acyl-CoA dehydrogenase, permitting the optimal binding of the isobutyryl-CoA substrate. The dramatic lateral expansion of the binding cavity seen in isovaleryl-CoA dehydrogenase is not observed in IBD. The conserved tyrosine or phenylalanine that defines a side of the binding cavity in other acyl-CoA dehydrogenases is replaced by a leucine (Leu-375) in the current structure. Substrate binding changes the position of some residues lining the binding pocket as well as the position of the loop containing the catalytic glutamate and subsequent helix. Three clinical mutations have been modeled to the structure. The mutations do not affect substrate binding but instead appear to disrupt protein folding and/or stability.  相似文献   

12.
T C Lehman  C Thorpe 《Biochemistry》1990,29(47):10594-10602
Medium-chain acyl-CoA dehydrogenase reduced with octanoyl-CoA is reoxidized in two one-electron steps by two molecules of the physiological oxidant, electron transferring flavoprotein (ETF). The organometallic oxidant ferricenium hexafluorophosphate (Fc+PF6-) is an excellent alternative oxidant of the dehydrogenase and mimics a number of the features shown by ETF. Reoxidation of octanoyl-CoA-reduced enzyme (200 microM Fc+PF6- in 100 mM Hepes buffer, pH 7.6, 1 degree C) occurs in two one-electron steps with pseudo-first-order rate constants of 40 s-1 and about 200 s-1 for k1 and k2, respectively. The reaction is comparatively insensitive to ionic strength, and evidence of rate saturation is encountered at high ferricenium ion concentration. As observed with ETF, the free two-electron-reduced dehydrogenase is a much poorer kinetic reductant of Fc+PF6-, with rate constants of 3 s-1 and 0.3 s-1 (for k1 and k2, respectively) using 200 microM Fc+PF6-. In addition to the enoyl-CoA product formed during the dehydrogenation of octanoyl-CoA, binding a number of redox-inert acyl-CoA analogues (notably 3-thia- and 3-oxaoctanoyl-CoA) significantly accelerates electron transfer from the dehydrogenase to Fc+PF6-. Those ligands most effective at accelerating electron transfer favor deprotonation of reduced flavin species in the acyl-CoA dehydrogenase. Thus this rate enhancement may reflect the anticipated kinetic superiority of anionic flavin forms as reductants in outer-sphere electron-transfer processes. Evidence consistent with the presence of two distinct loci for redox communication with the bound flavin in the acyl-CoA dehydrogenase is presented.  相似文献   

13.
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.  相似文献   

14.
The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.  相似文献   

15.
16.
Rats were maintained on a riboflavin-deficient diet or on a diet containing clofibrate (0.5%, w/w). The activities of the mitochondrial FAD-dependent straight-chain acyl-CoA dehydrogenases (butyryl-CoA, octanoyl-CoA and palmitoyl-CoA) and the branched-chain acyl-CoA dehydrogenases (isovaleryl-CoA and isobutyryl-CoA) involved in the degradation of branched-chain acyl-CoA esters derived from branched-chain amino acids were assayed in liver mitochondrial extracts prepared in the absence and presence of exogenous FAD. These activities were low in livers from riboflavin-deficient rats (11, 28, 16, 6 and less than 2% of controls respectively) when prepared in the absence of exogenous FAD, and were not restored to control values when prepared in 25 microM-FAD (29, 47, 28, 7 and 17%). Clofibrate feeding increased the activities of butyryl-CoA, octanoyl-CoA and palmitoyl-CoA dehydrogenases (by 48, 116 and 98% of controls respectively), but not, by contrast, the activities of isovaleryl-CoA and isobutyryl-CoA dehydrogenases (62 and 102% of controls respectively). The mitochondrial fractions from riboflavin-deficient and from clofibrate-fed rats oxidized palmitoylcarnitine in State 3 at rates of 32 and 163% respectively of those from control rats.  相似文献   

17.
We have determined reduction potentials for porcine mitochondrial general fatty acyl-CoA dehydrogenase (GAD) and electron transfer flavoprotein (ETF) using an anaerobic spectroelectrochemical titration method. Computer simulation techniques were used to analyze the absorbance data. Nernst plots of the simulated data gave E'0, 7.1, quinone/semiquinone = -0.014 V and E'0, 7.1, semiquinone/hydroquinone = -0.036 V for ETF and E'0, 7.1, quinone/semiquinone = -0.155 V and E'0, 7.1, semiquinone/hydroquinone = -0.122 V for GAD. Using these techniques we have also determined a conditional reduction potential of -0.156 V for the chromophore producing fatty acyl-CoA substrate beta-2-furylpropionyl-CoA. From this value and our previous determination of the equilibrium constant for the transhydrogenation reaction between beta-2-furylpropionyl-CoA and the oxidized substrate crotonyl-CoA (Keq = 10.4), we have determined a reduction potential of -0.126 V for the butyryl-CoA/crotonyl-CoA couple. In light of the structural similarity between butyryl-CoA and octanoyl-CoA, the optimal substrate for GAD, the reduction potential for octanoyl-CoA should be similar to that for butyryl-CoA; i.e. fatty acyl-CoA substrates and GAD are essentially isopotential. The ability of octanoyl-CoA to reduce GAD quantitatively (Keq = 9.0) poses a dilemma in light of the nearly equal reduction potentials. We postulate that the stable charge-transfer complex formed between enzyme and optimal product is significantly lower in energy than enzyme and product and thus is responsible for pulling the reaction toward completion.  相似文献   

18.
Zeng J  Liu Y  Wu L  Li D 《Biochimica et biophysica acta》2007,1774(12):1628-1634
Medium-chain acyl-CoA dehydrogenase (MCAD) and acyl-CoA oxidase (ACO) are key enzymes catalyzing the rate-determining step for the beta-oxidation of fatty acids. Tyr375 of MCAD is conserved in all acyl-CoA dehydrogenases and is an important residue for substrate binding. Four Tyr375 variant enzymes of rat liver MCAD were obtained through site-directed mutagenesis. Y375K was found to have intrinsic acyl-CoA oxidase activity, which was confirmed using HPLC analysis, while the wild-type and other Tyr375 variant enzymes did not show detectable oxidase activity. The kinetic parameters for the oxidase activity of Y375K variant enzyme were determined to be k(cat) of 320+/-80 h(-1) and K(M) of 30+/-15 microM using hexanoyl-CoA as the substrate. The oxidase activity of Y375K increased more than 200 times compared with that reported for the MCAD wild-type enzyme from mammalian sources. Molecular modeling study shows that the solvent accessible area for Y375K variant enzyme is wider than that of the wild-type enzyme, which indicates that Tyr375 may function as a switch against solvent accession. The mutation of this residue to Lys375 allows molecular oxygen to enter into the catalytic site serving as the electron acceptor for the reduced FAD cofactor.  相似文献   

19.
We have carried out an extensive in silico analysis on 18 disease associated missense mutations found in electron transfer flavoprotein (ETF), and found that mutations fall essentially in two groups, one in which mutations affect protein folding and assembly, and another one in which mutations impair catalytic activity and disrupt interactions with partner dehydrogenases. We have further experimentally analyzed three of these mutations, ETFβ-p.Cys42Arg, ETFβ-p.Asp128Asn and ETFβ–p.Arg191Cys, which have been found in homozygous form in patients and which typify different scenarios in respect to the clinical phenotypes. The ETFβ-p.Cys42Arg mutation, related to a severe form of multiple acyl-CoA dehydrogenase deficiency (MADD), affects directly the AMP binding site and intersubunit contacts and impairs correct protein folding. The two other variations, ETFβ-p.Asp128Asn and ETFβ–p.Arg191Cys, are both associated with mild MADD, but these mutations have a different impact on ETF. Although none affects the overall α/β fold topology as shown by far-UV CD, analysis of the purified proteins shows that both have substantially decreased enzymatic activity and conformational stability. Altogether, this study combines in silico analysis of mutations with experimental data and has allowed establishing structural hotspots within the ETF fold that are useful to provide a rationale for the prediction of effects of mutations in ETF.  相似文献   

20.
Short/branched chain acyl-CoA dehydrogenase (SBCAD), isovaleryl-CoA dehydrogenase (IVD), and isobutyryl-CoA dehydrogenase (IBD) are involved in metabolism of isoleucine, leucine, and valine, respectively. These three enzymes all belong to acyl-CoA dehydrogenase (ACD) family, and catalyze the dehydrogenation of monomethyl branched-chain fatty acid (mmBCFA) thioester derivatives. In the present work, the catalytic properties of rat SBCAD, IVD, and IBD, including their substrate specificity, isomerase activity, and enzyme inhibition, were comparatively studied. Our results indicated that SBCAD has its catalytic properties relatively similar to those of straight-chain acyl-CoA dehydrogenases in terms of their isomerase activity and enzyme inhibition, while IVD and IBD are different. IVD has relatively broader substrate specificity than those of the other two enzymes in accommodating various substrate analogs. The present study increased our understanding for the metabolism of monomethyl branched-chain fatty acids (mmBCFAs) and branched-chain amino acids (BCAAs), which should also be useful for selective control of a particular reaction through the design of specific inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号