首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Profiling of microbial communities in environmental samples often utilizes phospholipid fatty acid (PLFA) analysis. This method has been used for more than 35 years and is still popular as a means to characterize microbial communities in a diverse range of environmental matrices. This review examines the various recent applications of PLFA analysis in environmental studies with specific reference to the interpretation of the PLFA results. It is evident that interpretations of PLFA results do not always correlate between different investigations. These discrepancies in interpretation and their subsequent applications to environmental studies are discussed. However, in spite of limitations to the manner in which PLFA data are applied, the approach remains one with great potential for improving our understanding of the relationship between microbial populations and the environment. This review highlights the caveats and provides suggestions towards the practicable application of PLFA data interpretation.  相似文献   

2.
孟凡凡  胡盎  王建军 《微生物学报》2020,60(9):1784-1800
微生物性状是指与其存活、生长和繁殖紧密相关的一系列核心属性,这些属性能够反映微生物对环境变化的响应,进而影响微生物的物种分布格局、群落构建机制以及相应的生态系统功能。越来越多的研究表明,相比于微生物分类学信息,微生物性状可以在种群、群落和生态系统尺度等视角扩展我们对微生物生态过程的理解,并提供生态模式的机理性解释。本文回顾微生物性状研究的发展历程,总结近年来基于微生物性状研究的前沿科学问题,比如微生物性状的分类和测定方法、基于性状的功能多样性定义及应用、性状与物种分布格局和群落构建机制的关系、性状对生物多样性和生态系统功能的影响以及对环境变化的响应等。尽管微生物性状研究已经延伸到生态学领域的各个方面,有力推动着各个前沿科学问题的研究发展,但是仍然面临很多机遇与挑战。因此,本文也从研究方法和研究方向等方面对未来基于微生物性状的研究提出了展望。  相似文献   

3.
Winogradsky columns have been widely used to study soil microbial communities, but the vast majority of those investigations have focused on the ecology and diversity of bacteria. In contrast, microbial eukaryotes (ME) have been regularly overlooked in studies based on experimental soil columns. Despite the recognized ecological relevance of ME in soil communities, investigations focused on ME diversity and the abundance of certain groups of interest are still scarce. In the present study, we used DNA metabarcoding (high-throughput sequencing of the V4 region of the 18S rRNA locus) to survey the ME diversity and abundance in an experimental Winogradsky soil column. Consistent with previous surveys in natural soils, our survey identified members of Cercozoa (Rhizaria; 31.2%), Apicomplexa and Ciliophora (Alveolata; 12.5%) as the predominant ME groups, but at particular depths we also detected the abundant presence of ME lineages that are typically rare in natural environments, such as members of the Vampyrellida (Rhizaria) and Breviatea (Amorphea). Our survey demonstrates that experimental soil columns are an efficient enrichment-culture approach that can enhance investigations about the diversity and ecology of ME in soils.  相似文献   

4.
绿弯菌的研究现状及展望   总被引:5,自引:0,他引:5  
绿弯菌是一个深度分支的门级别细菌类群,广泛分布于生物圈各种生境。现已生效发表的绿弯菌构成9个纲,但仅包含56个种;基于分子生态学的研究结果表明尚有大量绿弯菌类群仍是未培养状态。绿弯菌形态多样,营养方式和代谢途径十分丰富,参与了C、N、S等一系列重要生源元素的生物地球化学循环过程。研究该类群不仅有助于认识环境中微生物的多样性及其代谢特征,从而更好的理解微生物参与的生态学过程,还有助于揭示微生物对环境的适应及其进化。本文主要综述了绿弯菌的发现历史、营养、代谢及其在元素循环中的作用,并总结了其分离培养和潜在应用价值,最后展望了未来的研究方向,旨在为深入探究绿弯菌的进化、培养和驱动地球化学元素循环等研究提供参考。  相似文献   

5.
土壤微生物多样性海拔格局研究进展   总被引:8,自引:4,他引:8  
厉桂香  马克明 《生态学报》2018,38(5):1521-1529
生物多样性的海拔分布格局与维持机制是生物多样性与生态系统功能研究的热点领域。相比动植物多样性海拔分布格局,土壤微生物多样性海拔分布格局的研究还处在起步阶段。近年来,随着以罗氏454、Illumina Mi Seq等为代表的高通量测序平台的发展,土壤微生物海拔梯度分布格局的研究进展较快。对土壤微生物多样性海拔分布格局最新研究综述发现,土壤微生物海拔分布模式并不明确,表现为无趋势、下降、单峰或者下凹型等多种海拔分布模式。这与大型动植物并不相同,暗示其驱动机制可能存在一定的差异。微生物由于其个体微小、扩散能力强以及较高的多样性和个体丰度而在局域尺度上可能更易受到气候环境因素的影响。土壤pH、碳、氮等因子是影响微生物多样性和群落组成在海拔梯度上变异的重要因素。此外,温度和降水也具有重要作用。另外,除微生物自身属性以及取样限制外,测序深度可能是影响土壤微生物物种丰富度海拔分布格局的重要因素。目前,对土壤微生物群落的研究在功能基因、群落构建机制以及生态学理论的验证方面还存在着不足。未来的研究应进一步加大测序深度,增加取样密度,着重关注全球气候变化及生物多样性丧失背景下土壤微生物群落的构建和维持机制及其生态系统功能等方面。  相似文献   

6.
7.
【背景】在过去的十几年里,基于核糖体RNA基因的扩增子测序技术被广泛用于各种生态系统中微生物群落的多样性检测。扩增子测序的使用极大地促进了土壤、水体、空气等环境中微生物生态的相关研究。【目的】随着高通量测序技术的不断发展和参考数据库的不断更新,针对不同的环境样本的引物选择和改进仍然需要更深入的校验。【方法】本文收集了目前在微生物群落研究中被广泛采用的标记基因扩增通用引物,包括16S rRNA基因扩增常用的8对通用引物和2对古菌引物、9对真菌转录间隔区(internal transcribed spacer,ITS)基因扩增引物,以及18S rRNA基因扩增的4对真核微生物通用引物和1对真菌特异性引物。这些引物中包括了地球微生物组计划(Earth Microbiome Project,EMP)推荐的2对16S rRNA基因扩增引物、1对ITS1基因扩增引物和1对18S rRNA基因扩增引物。采用最近更新的标准数据库对这些引物进行了覆盖度和特异性评价。【结果】EMP推荐的引物依然具有较高的覆盖度,而其他引物在覆盖度及对特定环境或类群的特异性上也各有特点。此外,最近有研究对这些通用引物进行了一些改进,而我们也发现,一个碱基的变化都可能会导致评价结果或扩增产物发生明显变化,简并碱基的引入既可以覆盖更多的物种,但同时也会在一定程度上降低关注物种的特异性。【结论】研究结果为微生态研究中标记基因的引物选择提供了一个广泛的指导,但在关注具体科学问题时,引物的选择仍需数据指导与实验尝试。  相似文献   

8.
农田生态系统耕作方式显著影响土壤微生物群落结构和功能,进而影响土壤微生物介导的土壤碳循环过程。以免耕结合作物秸秆还田为核心的保护性耕作是提升土壤碳汇功能和肥力的重要措施,其中土壤微生物发挥了关键作用。尽管有较多关于保护性耕作下微生物群落结构与功能的研究,但由于土壤系统的复杂性、环境因素以及微生物群落评价方法的差异性,尚未形成对保护性耕作下土壤微生物群落响应规律的系统认知。此外,研究多关注土壤微生物作为分解者的作用以及植物源碳对土壤碳库形成的贡献,而忽略了微生物源碳对土壤碳库形成和稳定的贡献。本文在归纳土壤有机质形成和稳定理论体系演变的基础上,梳理了土壤微生物研究方法的进展,重点阐述了保护性耕作对土壤微生物生物量、群落多样性和组成、碳代谢活性以及微生物源有机碳截获的影响,并对未来该领域的研究方向进行展望,以期为探索农田生态系统土壤微生物群落响应规律及其介导的土壤碳循环功能提供参考。  相似文献   

9.
Flows of water, soil, litter, and anthropogenic materials in and around rivers lead to the mixing of their resident microbial communities and subsequently to a resultant community distinct from its precursors. Consideration of these events through a new conceptual lens, namely, community coalescence, could provide a means of integrating physical, environmental, and ecological mechanisms to predict microbial community assembly patterns better in these habitats. Here, we review field studies of microbial communities in riverine habitats where environmental mixing regularly occurs, interpret some of these studies within the community coalescence framework and posit novel hypotheses and insights that may be gained in riverine microbial ecology through the application of this concept. Particularly in the face of a changing climate and rivers under increasing anthropogenic pressures, knowledge about the factors governing microbial community assembly is essential to forecast and/or respond to changes in ecosystem function. Additionally, there is the potential for microbial ecology studies in rivers to become a driver of theory development: riverine systems are ideal for coalescence studies because regular and predictable environmental mixing occurs. Data appropriate for testing community coalescence theory could be collected with minimal alteration to existing study designs.  相似文献   

10.
Kinetics of microbial growth with mixtures of carbon sources   总被引:11,自引:0,他引:11  
  相似文献   

11.
Molecular techniques are valuable tools that can improve our understanding of the structure of microbial communities. They provide the ability to probe for life in all niches of the biosphere, perhaps even supplanting the need to cultivate microorganisms or to conduct ecophysiological investigations. However, an overemphasis and strict dependence on such large information-driven endeavours as environmental metagenomics could overwhelm the field, to the detriment of microbial ecology. We now call for more balanced, hypothesis-driven research efforts that couple metagenomics with classic approaches.  相似文献   

12.
BACKGROUND: Incorporating genetic analyses into birth defect cluster investigations may increase understanding of both genetic and environmental risk factors for the defect. Current constraints of most birth defect cluster investigations make candidate gene selection the most feasible approach. Here, we describe strategies for choosing candidate genes for such investigations, which will also be applicable to more general gene-environment studies. METHODS: We reviewed publicly available web-based resources for selection of candidate genes and identification of risk factors, as well as publications on different strategies for candidate gene selection. RESULTS: Candidate gene selection requires consideration of available gene-disease databases, previous epidemiological studies, animal model research, linkage and expression studies, and other resources. We describe general considerations for utilizing available resources, as well as provide an example of a search for candidate genes related to gastroschisis. CONCLUSIONS: Available web resources could facilitate selection of candidate genes, but selection of optimal candidates will still require a strong understanding of genetics and the pathogenesis of the defect, as well as careful consideration of previous epidemiological studies.  相似文献   

13.
元基因组测序方法为微生物研究提供了有力的工具。但其中的DNA提取过程,会不可避免地混入实验室中的空气微生物。这些微生物DNA,是否会对一些极微量的元基因组检测 (如皮肤样本等) 结果造成影响,有多大影响,仍没有明确结论。本研究首先收集了实验室空气样品,用16S rRNA引物建立了基于qPCR的标准曲线,并检测了在开放环境下提取DNA过程中可掺杂的环境微生物DNA量。然后在开放环境下提取纯水DNA样品并进行元基因组分析,以确定掺杂环境微生物的种类。最后分别在生物安全柜和实验室开放环境下提取皮肤样本,并用鸟枪测序方法对样本的微生物组成进行分析,以评估掺杂环境微生物对元基因组检测结果的影响。结果显示,在实验室开放环境的DNA提取过程中,环境微生物的DNA残留可达28.9 pg,可达某些极微量样本DNA总量的30%。元基因组分析显示,样品中掺杂的环境微生物主要是痤疮杆菌Cutibacterium acnes、大肠杆菌Escherichia coli等皮肤常见细菌。与洁净皮肤样本的信息相比,开放环境下提取掺杂了数十种环境微生物,并导致主要菌种的丰度大幅降低,从而影响结果的真实性。因此,微量样品的DNA提取应在洁净环境下执行。  相似文献   

14.
The purpose of this review is to recognize the scientific and environmental importance of diffuse pollution with polycyclic aromatic hydrocarbons (PAHs). Diffuse PAH pollution of surface soil is characterized by large area extents, low PAH concentrations, and the lack of point sources. Urban and pristine topsoils receive a continuous input of pyrogenic PAHs, which induces a microbial potential for PAH degradation. The significance of this potential in relation to black carbon particles, PAH bioaccessibility, microbial PAH degradation, and the fate of diffuse PAHs in soil is discussed. Finally, the state-of-the-art methods for future investigations of the microbial degradation of diffuse PAH pollution are reviewed.  相似文献   

15.
The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes.  相似文献   

16.
基因芯片技术在环境微生物群落研究中的应用   总被引:2,自引:0,他引:2  
金敏  李君文 《微生物学通报》2008,35(9):1466-1471
基因芯片技术作为一种快速、敏感、高通量的检测技术,近几年来在环境微生物群落研究中的应用越来越广泛并且得到充分的发展.它不仅可以研究环境微生物群落的微生物分布、种类、功能、动力学变化,还能分析环境污染等环境因素改变对其微生物生态的影响.本文按照基因芯片探针的设计方法,将环境样品群落研究基因芯片分为系统寡核苷酸芯片、功能基因芯片、群落基因组芯片、宏基因组芯片,并简要综述了该技术在活性污泥、土壤、水等环境样品微生物群落研究上的应用,最后,本文展望了该技术的研究方向和在寻找不同环境微生物群落之间差异微生物、差异基因或差异表达基因研究中的应用前景.  相似文献   

17.
Xu J 《Molecular ecology》2006,15(7):1713-1731
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.  相似文献   

18.
Since a few decades, apiculture is facing important economic losses worldwide with general major consequences in many areas of agriculture. A strong attention has been paid towards the phenomenon named Colony Collapse Disorder in which colonies suddenly disappear with no clear explanations. Honeybee colonies can be affected by abiotic factors, such as environmental pollution or insecticide applications for agricultural purposes. Also biotic stresses cause colony losses, including bacterial (e.g. Paenibacillus larvae) and fungal (e.g. Ascosphaera apis) pathogens, microsporidia (e.g. Nosema apis), parasites (i.e. Varroa destructor) and several viruses. In the light of recent research, intestinal dysbiosis, considered as the relative disproportion of the species within the native microbiota, has shown to affect human and animal health. In arthropods, alteration of the gut microbial climax community has been shown to be linked to health and fitness disequilibrium, like in the medfly Ceratitis capitata for which low mate competitiveness is determined by a gut microbial community imbalance. According to these observations, it is possible to hypothesize that dysbiosis may have a role in disease occurrence also in honeybees. Here we aim to discuss the current knowledge on dysbiosis in the honeybee and its relation with honeybee health by reviewing the investigations of the microbial diversity associated to honeybees and the recent experiments performed to control bee diseases by microbial symbionts. We conclude that, despite the importance of a good functionality of the associated microbiota in preserving insect health has been proved, the mechanisms involved in honeybee gut dysbiosis are still unknown. Accurate in vitro, in vivo and in field investigations are required under healthy, diseased and stressed conditions for the host.  相似文献   

19.
吴志丰  邱月  任引  蒋梧州  杨磊 《生态学报》2022,42(6):2489-2500
城市化进程将原有自然生态系统改造为以不透水面为主的人工景观,这种变化影响了空气微生物群落的生存环境及其时空异质性。空气微生物受城市化的影响程度与其生态功能的发挥关系密切,微生物群落特征的改变会在一定程度上影响当地生态环境质量并给人群健康带来潜在威胁。城市化进程和空气微生物群落动态分属两个时空尺度差异巨大的生态过程,二者的联合分析已成为目前生态安全与环境健康领域的研究热点。从空气微生物的来源及其组成特征、空气微生物群落的时空异质性及其影响因素以及空气微生物的生态环境效应三个方面系统梳理和总结了近年来探索城市化和空气微生物群落动态之间关系的研究,从宏观视角探讨了当前空气微生物研究的不足,并引入社会-经济-自然复合生态系统、景观格局与过程等相关理论和方法来分析城市化对空气微生物群落特征的影响,旨在明确城市景观格局作用下的空气微生物群落对人群健康的潜在威胁程度,为快速城市化过程中的人居环境的改善提供参考。  相似文献   

20.
Soil respiration (SR) in forests contributes significant carbon dioxide emissions from terrestrial ecosystems and is highly sensitive to environmental changes, including soil temperature, soil moisture, microbial community, surface litter, and vegetation type. Indeed, a small change in SR may have large impacts on the global carbon balance, further influencing feedbacks to climate change. Thus, detailed characterization of SR responses to changes in environmental conditions is needed to accurately estimate carbon dioxide emissions from forest ecosystems. However, data for such analyses are still limited, especially in tropical forests of Southeast Asia where various stages of forest succession exist due to previous land‐use changes. In this study, we measured SR and some environmental factors including soil temperature (ST), soil moisture (SM), and organic matter content (OM) in three successional tropical forests in both wet and dry periods. We also analyzed the relationships between SR and these environmental variables. Results showed that SR was higher in the wet period and in older forests. Although no response of SR to ST was found in younger forest stages, SR of the old‐growth forest significantly responded to ST, plausibly due to the nonuniform forest structure, including gaps, that resulted in a wide range of ST. Across forest stages, SM was the limiting factor for SR in the wet period, whereas SR significantly varied with OM in the dry period. Overall, our results indicated that the responses of SR to environmental factors varied temporally and across forest succession. Nevertheless, these findings are still preliminary and call for detailed investigations on SR and its variations with environmental factors in Southeast Asian tropical forests where patches of successional stages dominate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号