首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sh M Kocharian  Iu V Smirnov 《Genetika》1977,13(8):1425-1433
Strains of Escherichia coli K-12 defective in purine nucleoside phosphorylase (pup gene) formed on the medium with inosine as the source of carbon and energy phenotypical reversions for the ability of utilizing inosine as source of carbon or purines. The phenotypical suppression of the purine nucleoside phosphorylase deficiency is the result of the mutations (called pnd), which are mapped on the chromosome of E. coli beyond the region of the structural pup-gene location and have phenotypic manifestation distinct from that of pup+ allele: a) pnd mutants divide into some groups for the ability of utilizing several purine nucleosides, including xantosine that cannot be metabolized by pnd+ strains of E. coli; b) pnd mutations do not restore the ability of purine auxotrophs (pur) defective in purine nucleoside phosphorylase (pup) and adenine phosphoribosyltransferase (apt) to grow on the medium with adenine as the sole source of purines. Cell-free extracts of pnd mutants fail to degrade the guanine nucleosides in the absence of phosphate or arsenate ions. These data (and also the ability of pnd mutants to utilize both purine ribonucleosides and deoxyribonucleosides) seem to indicate that the activities induced by pnd mutations are phosphorylase activities.  相似文献   

2.
The nucleoside hydrolase (NH) of the Trypanosoma vivax parasite catalyzes the hydrolysis of the N-glycosidic bond in ribonucleosides according to the following reaction: beta-purine (or pyrimidine) nucleoside + H(2)O --> purine (pyrimidine) base + ribose. The reaction follows a highly dissociative nucleophilic displacement reaction mechanism with a ribosyl oxocarbenium-like transition state. This paper describes the first pre-steady-state analysis of the conversion of a number of purine nucleosides. The NH exhibits burst kinetics and behaves with half-of-the-sites reactivity. The analysis suggests that the NH of T. vivax follows a complex multistep mechanism in which a common slow step different from the chemical hydrolysis is rate limiting. Stopped-flow fluorescence binding experiments with ribose indicate that a tightly bound enzyme-ribose complex accumulates during the enzymatic hydrolysis of the common purine nucleosides. This is caused by a slow isomerization between a tight and a loose enzyme-ribose complex forming the rate-limiting step on the reaction coordinate.  相似文献   

3.
A Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) was reported to phosphorylate all four natural deoxyribonucleosides as well as several nucleoside analogs (Munch-Petersen, B., Piskur, J., and Sondergaard, L. (1998) J. Biol. Chem. 273, 3926-3931). The broad substrate specificity of this enzyme together with a high catalytic rate makes it unique among the nucleoside kinases. We have in the present study cloned the Dm-dNK cDNA, expressed the 29-kDa protein in Escherichia coli, and characterized the recombinant enzyme for the phosphorylation of nucleosides and clinically important nucleoside analogs. The recombinant enzyme preferentially phosphorylated the pyrimidine nucleosides dThd, dCyd, and dUrd, but phosphorylation of the purine nucleosides dAdo and dGuo was also efficiently catalyzed. Dm-dNK is closely related to human and herpes simplex virus deoxyribonucleoside kinases. The highest level of sequence similarity was noted with human mitochondrial thymidine kinase 2, and these enzymes also share many substrates. The cDNA cloning and characterization of Dm-dNK will be the basis for studies on the use of this multisubstrate nucleoside kinase as a suicide gene in combined gene/chemotherapy of cancer.  相似文献   

4.
Human purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effect on B-cell function. PNP is highly specific for 6-oxopurine nucleosides and exhibits negligible activity for 6-aminopurine nucleosides. The catalytic efficiency for inosine is 350,000-fold greater than for adenosine. Adenine nucleosides and nucleotides are deaminated by adenosine deaminase and AMP deaminase to their corresponding inosine derivatives which, in turn, may be further degraded. Here we report the crystal structures of human PNP in complex with inosine and 2('),3(')-dideoxyinosine, refined to 2.8A resolution using synchrotron radiation. The present structures provide explanation for ligand binding, refine the purine-binding site, and can be used for future inhibitor design.  相似文献   

5.
In this paper we show that phosphoribomutase is induced in Bacillus cereus by the same metabolizable purine and pyrimidine ribonucleosides previously shown to induce the purine nucleoside phosphorylase (Tozzi, M.G., Sgarrella, F. and Ipata, P.L. (1981) Biochim. Biophys. Acta 678, 460-466). The mutase allows ribose 1-phosphate formed from nucleosides to be utilized by the cell through the pentose cycle, upon transformation to ribose 5-phosphate. The equilibrium constant of the mutase reaction is towards ribose-5-phosphate formation. The coordinate induction of the two enzymes completes the picture of the molecular events leading to the utilization of the sugar moiety of purine nucleotides and nucleosides as an energy source (Mura. U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905-7909).  相似文献   

6.
In this paper we show that phosphoribomutase is induced in Bacillus cereus by the same metabolizable purine and pyrimidine ribonucleosides previously shown to induce the purine nucleoside phosphorylase (Tozzi, M.G., Sgarrella, F. and Ipata, P.L. (1981) Biochim. Biophys. Acta 678, 460–466). The mutase allows ribose 1-phosphate formed from nucleosides to be utilized by the cell through the pentose cycle, upon transformation to ribose 5-phosphate. The equilibrium constant of the mutase reaction is towards ribose-5-phosphate formation. The coordinate induction of the two enzymes completes the picture of the molecular events leading to the utilization of the sugar moiety of purine nucleosides and nucleosides as an energy source (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905–7909).  相似文献   

7.
Adenosine phosphorylase, a purine nucleoside phosphorylase endowed with high specificity for adenine nucleosides, was purified 117-fold from vegetative forms of Bacillus cereus. The purification procedure included ammonium sulphate fractionation, pH 4 treatment, ion exchange chromatography on DEAE-Sephacel, gel filtration on Sephacryl S-300 HR and affinity chromatography on N(6)-adenosyl agarose. The enzyme shows a good stability to both temperature and pH. It appears to be a homohexamer of 164+/-5 kDa. Kinetic characterization confirmed the specificity of this phosphorylase for 6-aminopurine nucleosides. Adenosine was the preferred substrate for nucleoside phosphorolysis (k(cat)/K(m) 2.1x10(6) s(-1) M(-1)), followed by 2'-deoxyadenosine (k(cat)/K(m) 4.2x10(5) s(-1) M(-1)). Apparently, the low specificity of adenosine phosphorylase towards 6-oxopurine nucleosides is due to a slow catalytic rate rather than to poor substrate binding.  相似文献   

8.
An improved method for the enzymatic synthesis of purine nucleosides is described. Pyrimidine nucleosides were used as pentosyl donors and two phosphorylases were used as catalysts. One of the enzymes, either uridine phosphorylase (Urd Pase) or thymidine phosphorylase (dThd Pase), catalyzed the phosphorolysis of the pentosyl donor. The other enzyme, purine nucleoside phosphorylase (PN Pase), catalyzed the synthesis of the product nucleoside by utilizing the pentose 1-phosphate ester generated from the phosphorolysis of the pyrimidine nucleoside. Urd Pase, dThd Pase, and PN Pase were separated from each other in extracts of Escherichia coli by titration with calcium phosphate gel. Each enzyme was further purified by ion-exchange chromatography. Factors that affect the stability of these catalysts were studied. The pH optima for the stability of Urd Pase, dThd Pase, and PN Pase were 7.6, 6.5, and 7.4, respectively. The order of relative heat stability was Urd Pase greater than PN Pase greater than dThd Pase. The stability of each enzyme increased with increasing enzyme concentration. This dependence was strongest with dThd Pase and weakest with Urd Pase. Of the substrates tested, the most potent stabilizers of Urd Pase, dThd Pase, and PN Pase were uridine, 2'-deoxyribose 1-phosphate, and ribose 1-phosphate, respectively. Some general guidelines for optimization of yields are given. In a model reaction, optimal product formation was obtained at low phosphate concentrations. As examples of the efficiency of the method, the 2'-deoxyribonucleoside of 6-(dimethylamino)purine and the ribonucleoside of 2-amino-6-chloropurine were prepared in yields of 81 and 76%, respectively.  相似文献   

9.
Purine nucleoside metabolism in the archaeon Pyrococcus furiosus is catalyzed by purine nucleoside phosphorylase (PfPNP) and 5'-deoxy-5'-methylthioadenosine phosphorylase (PfMTAP). These enzymes, characterized by 50% amino acid sequence identity, show non-common features of thermophilicity and thermostability and are stabilized by intramolecular disulfide bonds. PfPNP is highly specific for 6-oxopurine nucleosides while PfMTAP is characterized by a broad substrate specificity with 6-aminopurine nucleosides as preferred substrates. Amino acid sequence comparison clearly shows that the hypothetical active sites of PfPNP and PfMTAP are almost identical and that, in analogy with human 5'-deoxy-5'-methylthioadenosine phosphorylase and human purine nucleoside phosphorylase, residue changes at level of the same crucial positions could be responsible for the switch of substrate specificity. To validate this hypothesis we changed the putative active site of PfPNP by site-directed mutagenesis. Substrate specificity and catalytic efficiency of PfPNP mutants were then analyzed by kinetic studies and compared with the wild-type enzyme. We carried out the molecular modeling of PfPNP and PfMTAP to obtain a picture of the overall enzyme structure and to identify structural features as well as interactions playing critical roles in thermostability. Finally, we utilized the structural models of mutant enzyme-substrate complex to rationalize the functional effects of the mutations.  相似文献   

10.
Summary The presence of a second purine nucleoside phosphorylase in wild-type strains of E. coli K-12 after growth on xanthosine has been demonstrated. Like other purine nucleoside phosphorylases it is able to carry out both phosphorylosis and synthesis of purine deoxy- and ribonucleosides whilst pyrimidine nucleosides cannot act as substrates. In contrast to the well characterised purine nucleoside phosphorylase of E. coli K-12 (encoded by the deoD gene) this new enzyme could act on xanthosine and is hence called xanthosine phosphorylase. Studies of its substrate specificity showed that xanthosine phosphorylase, like the mammalian purine nucleoside phosphorylases, has no activity towards adenine and the corresponding nucleosides. Determinations of K m and gel filtration behaviour was carried out on crude dialysed extracts. The presence of xanthosine phosphorylase enables E. coli to grow on xanthosine as carbon source. Xanthosine was the only compound found which induced xanthosine phosphorylase. No other known nucleoside catabolising enzyme was induced by xanthosine. The implications of non-linear induction kinetics of xanthosine phosphorylase is discussed.  相似文献   

11.
Purine nucleoside phosphorylase (PNP) catalyzes reversible phosphorolysis of purine deoxy- and ribonucleosides with formation (d)Rib-1-P and corresponding bases. PNP plays a leading role in the cell metabolism of nucleosides and nucleotides, as well as in maintaining the immune status of an organism. The major aim of the majority of studies on the PNP is the detection of highly effective inhibitors of this enzyme, derivatives of purine nucleosides used in medicine as immunosuppressors, which are essential for creating selective T-cell immunodeficiency in a human body for organ and tissue transplantation. The present work is devoted to the study of the effects of some synthetic derivatives of purine nucleosides on activity of highly purified PNP from rabbit spleen and also from human healthy and tumor tissues of lung and kidneys. Purine nucleoside analogues modified at various positions of both the heterocyclic base and carbohydrate residues have been investigated. Several compounds, including 8-mercapto-acyclovir, 8-bromo-9-(3,4-hydroxybutyl)guanine, which demonstrated potent PNP inhibition, could be offered for subsequent study as immunosuppressors during organ and tissue transplantation.  相似文献   

12.
Deoxyribonucleosides were separated from ribonucleosides by chromatography on polyethyleneimine cellulose columns (Pasteur pipettes. The deoxyribonucleosides were quantitatively eluted with 25 mM boric acid in less than 10 ml while the ribonucleosides were retained. The ribonucleosides were eluted with 1 M NaCl. This method was utilized to assay for GDP, UDP, ADP, and CDP reductase activities after hydrolysis of the substrate and product nucleotides to the corresponding nucleosides. All four reductase activities were assayed using identical conditions of column size, eluting solution (25 mM boric acid), and elution volume. The use of polyethyleneimine cellulose columns with boric acid can be adapted to other enzyme assays such as purine nucleoside phosphorylase and for the isolation of deoxyribonucleotides from cellular extracts.  相似文献   

13.
The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) is sequence-related to three human deoxyribonucleoside kinases and to herpes simplex virus type-1 thymidine kinase. Dm-dNK phosphorylates both purine and pyrimidine deoxyribonucleosides and nucleoside analogues although it has a preference for pyrimidine nucleosides. We performed site-directed mutagenesis on residues that, based on structural data, are involved in substrate recognition. The aim was to increase the phosphorylation efficiency of purine nucleoside substrates to create an improved enzyme to be used in suicide gene therapy. A Q81N mutation showed a relative increase in deoxyguanosine phosphorylation compared with the wild-type enzyme although the efficiency of deoxythymidine phosphorylation was 10-fold lower for the mutant. In addition to residue Q81 the function of amino acids N28, I29 and F114 was investigated by different substitutions. All of the mutated enzymes showed decreased efficiency of thymidine phosphorylation in comparison with the wild-type enzyme supporting their importance for substrate binding and/or catalysis as proposed by the recently solved structure of Dm-dNK.  相似文献   

14.
Purine nucleoside phosphorylases (PNPs, E. C. 2.4.2.1) use orthophosphate to cleave the N-glycosidic bond of beta-(deoxy)ribonucleosides to yield alpha-(deoxy)ribose 1-phosphate and the free purine base. Escherichia coli PNP-II, the product of the xapA gene, is similar to trimeric PNPs in sequence, but has been reported to migrate as a hexamer and to accept xanthosine with comparable efficiency to guanosine and inosine, the usual physiological substrates for trimeric PNPs. Here, we present a detailed biochemical characterization and the crystal structure of E.coli PNP-II. In three different crystal forms, PNP-II trimers dimerize, leading to a subunit arrangement that is qualitatively different from the "trimer of dimers" arrangement of conventional high molecular mass PNPs. Crystal structures are compatible with similar binding modes for guanine and xanthine, with a preference for the neutral over the monoanionic form of xanthine. A single amino acid exchange, tyrosine 191 to leucine, is sufficient to convert E.coli PNP-II into an enzyme with the specificity of conventional trimeric PNPs, but the reciprocal mutation in human PNP, valine 195 to tyrosine, does not elicit xanthosine phosphorylase activity in the human enzyme.  相似文献   

15.
The mechanism of trans-N-ribosylation in Corynebacterium sepedonicum was investigated. Using the DEAE-cellulose colum chromatography, this enzyme activity was divided into two fractions. One cleaved uridine to uracil and ribose phosphate, and the other decomposed inosine into hypoxanthine and ribose phosphate, in the presence of inorganic phosphate. The ribose phosphate was isolated and crystallized.

Several analytical data indicated that the ribose phosphate was ribose-1-phosphate. These two enzyme fractions catalyzed the formation of nucleosides from ribose-1-phosphate and bases.

Most of bacteria, which had the activity to transfer N-ribosyl group between purine and pyrimidine, could synthesize the nucleoside from base and ribose-1-phosphate.  相似文献   

16.
A novel series of 6-methylpurine nucleoside derivatives with substitutions at 5-position have been synthesised These compounds bear a 5'-heterocycle such as triazole or a imidazole with a two carbon chain, and an ether, thio ether or amine. To extend the SAR study of 2-fluoroadenine and 6-methyl purine nucleosides, their corresponding alpha-linker nucleosides with L-xylose and L-lyxose were also synthesized. All of these compounds have been evaluated for their substrate activity with E. coli PNP.  相似文献   

17.
A novel series of 6-methylpurine nucleoside derivatives with substitutions at 5′-position have been synthesised. These compounds bear a 5′-heterocycle such as triazole or a imidazole with a two carbon chain, and an ether, thio ether or amine. To extend the SAR study of 2-fluoroadenine and 6-methyl purine nucleosides, their corresponding α–linker nucleosides with l-xylose and l-lyxose were also synthesized. All of these compounds have been evaluated for their substrate activity with E. coli PNP.  相似文献   

18.
19.
Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by 1H NMR spectroscopy. In a series of five crystal structures we revealed the PnrA structure and provide insights into how PnrA can bind purine and pyrimidine ribonucleosides but with preference for purine ribonucleosides. Crystal structures of PnrA:nucleoside complexes unveil a clear pattern of interactions in which both the N- and C- domains of PnrA contribute. The ribose moiety is strongly recognized through a conserved network of H-bond interactions, while plasticity in loop 27–36 is essential to bind purine- or pyrimidine-based nucleosides.Further, we deciphered the role of PnrA in pneumococcal fitness in infection experiments. Phagocytosis experiments did not show a clear difference in phagocytosis between PnrA-deficient and wild-type pneumococci. In the acute pneumonia infection model the deficiency of PnrA attenuated moderately virulence of the mutant, which is indicated by a delay in the development of severe lung infections. Importantly, we confirmed the loss of fitness in co-infections, where the wild-type out-competed the pnrA-mutant. In conclusion, we present the PnrA structure in complex with individual nucleosides and show that the consumption of adenosine and guanosine under infection conditions is required for virulence.  相似文献   

20.
Crithidia fasciculata cells grown on complex medium with added [8-14C, 5'-3H]inosine or [8-14C,5'-3H]adenosine metabolize greater than 50% of the salvaged nucleosides through a pathway involving N-glycoside bond cleavage. Cell extracts contain a substantial nucleoside hydrolase activity but an insignificant purine nucleoside phosphorylase. The nucleoside hydrolase has been purified 1000-fold to greater than 99% homogeneity from kilogram quantities of C. fasciculata. The enzyme is a tetramer of Mr 34,000 subunits to give an apparent holoenzyme Mr of 143,000 by gel filtration. All of the commonly occurring nucleosides are substrates. The Km values vary from 0.38 to 4.7 mM with purine nucleosides binding more tightly than the pyrimidines. Values of Vmax/Km vary from 3.4 x 10(3) M-1 s-1 to 1.7 x 10(5) M-1 s-1 with the pyrimidine nucleosides giving the larger values. The turnover rate for inosine is 32 s-1 at 30 degrees C. The kinetic mechanism with inosine as substrate is rapid equilibrium with random product release. The hydrolytic reaction can be reversed to give an experimental Keq of 106 M with H2O taken as unity. The product dissociation constants for ribose and hypoxanthine are 0.7 and 6.2 mM, respectively. Deoxynucleosides or 5'-substituted nucleosides are poor substrates or do not react, and are poor inhibitors of the enzyme. The enzyme discriminates against methanol attack from solvent during steady-state catalysis, indicating the participation of an enzyme-directed water nucleophile. The pH profile for inosine hydrolysis gives two apparent pKa values of 6.1 with decreasing Vmax/Km values below the pKa and a plateau at higher pH values. These effects are due to the pH sensitivity of the Vmax values, since Km is independent of pH. The pH profile implicates two negatively charged groups which stabilize a transition state with oxycarbonium character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号