首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agrin is required for appropriate pre- and postsynaptic differentiation of neuromuscular junctions. While agrin's ability to orchestrate postsynaptic differentiation is well documented, more recent experiments have suggested that agrin is also a "stop signal" for the presynaptic neuron, and that agrin has actions on neurons in the CNS. To elucidate the neuronal activities of agrin and to define the receptor(s) responsible for these functions, we have examined adhesions of neurons and their neurite-outgrowth responses to purified agrin in vitro. We find that both full-length agrin and the C-terminal 95 kDa of agrin (agrin c95), which is sufficient to induce postsynaptic differentiation, are adhesive for chick ciliary ganglion (CG) and forebrain neurons. Consistent with previous findings, our results show that N-CAM binds to full-length agrin, and suggest that alpha-dystroglycan is a neuronal receptor for agrin c95. In neurite outgrowth assays, full-length agrin inhibited both laminin- and N-cadherin-induced neurite growth from CG neurons. The N-terminal 150 kDa fragment of agrin, but not agrin c95, inhibited neurite outgrowth, indicating that domains in the N-terminal portion of agrin are sufficient for this function. Adhesion assays using protein-coated beads and agrin-expressing cells revealed differential interactions of agrin with members of the immunoglobulin superfamily of cell adhesion molecules. However, none of these, including N-CAM, appeared to be critical for neuronal adhesion. In summary, our results suggest that the N-terminal half of agrin is involved in agrin's ability to inhibit neurite outgrowth. Our results further suggest that neither alpha-dystroglycan nor N-CAM, two known binding proteins for agrin, mediate this effect.  相似文献   

2.
Agrin is required for appropriate pre‐ and postsynaptic differentiation of neuromuscular junctions. While agrin's ability to orchestrate postsynaptic differentiation is well documented, more recent experiments have suggested that agrin is also a “stop signal” for the presynaptic neuron, and that agrin has actions on neurons in the CNS. To elucidate the neuronal activities of agrin and to define the receptor(s) responsible for these functions, we have examined adhesions of neurons and their neurite‐outgrowth responses to purified agrin in vitro. We find that both full‐length agrin and the C‐terminal 95 kDa of agrin (agrin c95), which is sufficient to induce postsynaptic differentiation, are adhesive for chick ciliary ganglion (CG) and forebrain neurons. Consistent with previous findings, our results show that N‐CAM binds to full‐length agrin, and suggest that α‐dystroglycan is a neuronal receptor for agrin c95. In neurite outgrowth assays, full‐length agrin inhibited both laminin‐ and N‐cadherin–induced neurite growth from CG neurons. The N‐terminal 150 kDa fragment of agrin, but not agrin c95, inhibited neurite outgrowth, indicating that domains in the N‐terminal portion of agrin are sufficient for this function. Adhesion assays using protein‐coated beads and agrin‐expressing cells revealed differential interactions of agrin with members of the immunoglobulin superfamily of cell adhesion molecules. However, none of these, including N‐CAM, appeared to be critical for neuronal adhesion. In summary, our results suggest that the N‐terminal half of agrin is involved in agrin's ability to inhibit neurite outgrowth. Our results further suggest that neither α‐dystroglycan nor N‐CAM, two known binding proteins for agrin, mediate this effect. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 164–179, 2002; DOI 10.1002/neu.10025  相似文献   

3.
Agrin is a large extracellular matrix protein that plays a key role in the formation and maintenance of the vertebrate neuromuscular junction. The amino acid sequence of agrin encodes a protein with a molecular size of 220 kDa, whereas SDS-PAGE shows a diffuse band around 400 kDa. Further studies showed that agrin is highly glycosylated and belongs to the family of heparan sulfate proteoglycans. By expressing different protein fragments, we localized the glycosaminoglycan (GAG) attachment sites to two locations within the agrin molecule. One site that is located between the seventh and eight follistatin-like domain includes 3 closely spaced serine-glycine (SG) consensus sequences and carries exclusively heparan sulfate side chains. The second site is located further downstream in the centrally located serine-threonine-rich domain and contains a cluster of 4 closely packed SG consensus sequences. This site predominantly carries chondroitin sulfate side chains. Investigating the contribution of individual serines in GAG priming by site-directed mutagenesis showed that each serine of the two SG clusters has the potential to carry GAGs. In accordance with the mixed GAG glycosylation of agrin peptide fragments, it was found that recombinant and in vivo-derived full-length agrin are not exclusively heparan sulfate proteoglycans but also carry chondroitin sulfate side chains.  相似文献   

4.
Chondroitin sulfate proteoglycan (CS-PG) was purified from rat brain and examined for its effect on neurite outgrowth in primary cultures of embryonic rat neocortical neurons. Neurite outgrowth was increased in culture wells coated with CS-PG. The core protein and glycosaminoglycan (GAG) prepared from the CS-PG were also examined for neurite-promoting activity. The activity was observed in culture wells coated with the core protein but not with GAG. These results suggest that CS-PG stimulates neurite outgrowth from the cultured neurons via its core protein.  相似文献   

5.
Although the role of agrin in the formation of the neuromuscular junction is well established, other functions for agrin have remained elusive. The present study was undertaken to assess the role of agrin in neurite outgrowth mediated by the heparin‐binding growth factor basic fibroblast growth factor (FGF‐2), which we have shown previously to bind to agrin with high affinity and that has been shown to mediate neurite outgrowth from a number of neuronal cell types. Using both an established neuronal cell line, PC12 cells, and primary chick retina neuronal cultures, we find that agrin potentiates the ability of FGF‐2 to stimulate neurite outgrowth. In PC12 cells and retinal neurons agrin increases the efficacy of FGF‐2 stimulation of neurite outgrowth mediated by the FGF receptor, as an inhibitor of the FGF receptor abolished neurite outgrowth in the presence of agrin and FGF‐2. We also examined possible mechanisms by which agrin may modulate neurite outgrowth, analyzing ERK phosphorylation and c‐fos phosphorylation. These studies indicate that agrin augments a transient early phosphorylation of ERK in the presence of FGF‐2, and augments and sustains FGF‐2 mediated increases in c‐fos phosphorylation. These data are consistent with established mechanisms where heparan sulfate proteoglycans such as agrin may increase the affinity between FGF‐2 and the FGF receptor. In summary, our studies suggest that neural agrin contributes to the establishment of axon pathways by modulating the function of neurite promoting molecules such as FGF‐2. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 261–277, 2003  相似文献   

6.
Glycosaminoglycans (GAGs) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study of GAGs from the porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord were isolated and purified by defatting, proteolysis, anion-exchange chromatography, and methanol precipitation. The isolated GAG content in brain was 5 times higher than in spinal cord (0.35 mg/g of dry sample, compared to 0.07 mg/g of dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG, respectively. The average molecular masses of CS from brain and spinal cord were 35.5 and 47.1 kDa, respectively, and those for HS from brain and spinal cord were 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the compositions of CS from brain and spinal cords are similar, with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine, but their composition of minor disaccharides differed. Analysis by (1)H and two-dimensional NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance.  相似文献   

7.
Vuong TT  Prydz K  Tveit H 《Glycobiology》2006,16(4):326-332
Serglycin with a green fluorescent protein tag (SG-GFP) expressed in epithelial Madin-Darby canine kidney cells is secreted mainly (85%) into the apical medium, but the glycosaminoglycan (GAG) chains on the SG-GFP protein core secreted basolaterally (15%) carry most of the sulfate added during biosynthesis (Tveit et al. (2005) J. Biol. Chem., 280, 29596-29603). Here we report further differences in apical and basolateral GAG synthesis. The less intensely sulfated chondroitin sulfate (CS) chains on apically secreted SG-GFP are longer than CS chains attached to basolateral SG-GFP, whereas the heparan sulfate (HS) chains are of similar lengths. When the supply of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) is limited by chlorate treatment, the synthesis machinery maintains sulfation of HS chains on basolateral SG-GFP until it is inhibited at 50 mM chlorate, whereas basolateral CS chains lose sulfate already at 12.5 mM chlorate and become longer. Apically, incorporation of 35S-sulfate into CS is reduced to a lesser extent at higher chlorate concentrations than basolateral CS, although apical CS is less intensely sulfated than basolateral CS in control cells. Similar to what was found for basolateral HS, sulfation of apical HS was not reduced at chlorate concentrations below 50 mM. Also, protein-free, xyloside-based GAG chains secreted basolaterally are more intensely sulfated than their apical counterpart, supporting the view that separate apical and basolateral pathways exist for GAG synthesis and sulfation. Introduction of benzyl beta-d-xyloside (BX) to the GAG synthesis machinery reduces the apical secretion of SG-GFP dramatically and also the modification of SG-GFP by HS.  相似文献   

8.
Nephronectin is a basement membrane protein comprising five N-terminal epidermal growth factor (EGF)-like repeats, a central linker segment containing an Arg-Gly-Asp (RGD) motif and a C-terminal meprin-A5 protein-receptor protein tyrosine phosphatase μ (MAM) domain. Nephronectin has been shown to interact with α8β1 integrin through the central linker segment, but its interactions with other molecules remain to be elucidated. Here, we examined the binding of nephronectin to a panel of glycosaminoglycan (GAG) chains. Nephronectin bound strongly to heparin and chondroitin sulfate (CS)-E and moderately to heparan sulfate (HS), but failed to bind to CS-A, CS-C, CS-D, dermatan sulfate and hyaluronic acid. Deletion of the MAM domain severely impaired the binding of nephronectin to heparin but not CS-E, whereas deletion of the EGF-like repeats reduced its binding to CS-E but not heparin, suggesting that nephronectin interacts with CS-E and heparin through the EGF-like repeats and MAM domain, respectively. Consistent with these results, nephronectin bound to agrin and perlecan, which are heparan sulfate proteoglycans (HSPGs) in basement membranes, in HS-dependent manners. Site-directed mutagenesis of the MAM domain revealed that multiple basic amino acid residues in the putative loop regions were involved in the binding of the MAM domain to agrin. The binding of nephronectin to basement membrane HSPGs was further confirmed by in situ nephronectin overlay assays using mouse frozen tissue sections. Taken together, these findings indicate that nephronectin is capable of binding to HSPGs in basement membranes via the MAM domain, and thereby raise the possibility that interactions with basement membrane HSPGs may be involved in the deposition of nephronectin onto basement membranes.  相似文献   

9.
Proteoglycan biosynthesis by chick embryo retina glial-like cells   总被引:1,自引:0,他引:1  
In this report we present biochemical evidence that purified cultures of chick embryo retina glial-like cells actively synthesize heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans as well as hyaluronic acid. Glial-like cell cultures were metabolically labeled with [3H]glucosamine and 35SO4, and the medium, cell layer, and substratum-bound fractions were analyzed separately. Proteoglycans were characterized according to charge, apparent molecular size, and glycosaminoglycan (GAG) composition and were found to be differentially distributed among the cellular compartments. HS was the predominant GAG overall and was the major species found in the cell layer and substratum-bound fractions. CS/DS was also present in each fraction and comprised the largest proportion of GAGs in the medium. The major GAG-containing material resolved into three different size classes. The first, found in the cell layer and substratum-bound fractions, contained both CS/DS and HS and was of large size. A second, intermediately sized class with a higher CS/DS:HS ratio was found in the medium. The smallest class was found in the cell layer fraction and comprised HS, most likely present as free GAG chains. In addition, each fraction contained hyaluronic acid. Characteristics of these macromolecules differ from those produced by purified cultures of chick embryo retina neurons and photoreceptors in terms of size, compartmental distribution, and presence of hyaluronic acid.  相似文献   

10.
Syndecan-1, present on the surfaces of normal murine mammary gland epithelial cells, is a transmembrane hybrid proteoglycan, which bears glycosaminoglycan (GAG) side chains of heparan sulfate (HS) and chondroitin sulfate (CS). Purified syndecan-1 ectodomains were analyzed for disaccharide composition and the GAG-protein linkage region after digestion with bacterial lyases. The HS chains contained predominantly a nonsulfated unit with smaller proportions of two monosulfated, two disulfated, and a trisulfated unit, whereas CS chains were demonstrated for the first time to bear GlcUA-GalNAc(4-O-sulfate) as a major component as well as GlcUA-GalNAc, GlcUA-GalNAc(6-O-sulfate), and an E disaccharide unit GlcUA-GalNAc(4,6-O-disulfate) as minor yet appreciable components. Two kinds of linkage region tetrasaccharides, GlcUA-Gal-Gal-Xyl and GlcUA-Gal-Gal-Xyl(2-O-phosphate), were found for the HS chains in a molar ratio of 55:45. In marked contrast, an additional sulfated tetrasaccharide, GlcUA-Gal(4-O-sulfate)-Gal-Xyl, was demonstrated only for the CS chains, and the unmodified phosphorylated and sulfated components were present at a molar ratio of 55:26:19. The present study thus provided conclusive evidence for the hypothesis that 4-O-sulfation of Gal is peculiar to CS chains in contrast to the phosphorylation of Xyl, which is common to both HS and CS chains. These modifications may be required for biosynthetic maturation of the linkage region tetrasaccharide sequence, which is a prerequisite for creating the repeating disaccharide region of GAG chains and/or biosynthetic selective chain assembly of CS and HS chains.  相似文献   

11.
Although the role of agrin in the formation of the neuromuscular junction is well established, other functions for agrin have remained elusive. The present study was undertaken to assess the role of agrin in neurite outgrowth mediated by the heparin-binding growth factor basic fibroblast growth factor (FGF-2), which we have shown previously to bind to agrin with high affinity and that has been shown to mediate neurite outgrowth from a number of neuronal cell types. Using both an established neuronal cell line, PC12 cells, and primary chick retina neuronal cultures, we find that agrin potentiates the ability of FGF-2 to stimulate neurite outgrowth. In PC12 cells and retinal neurons agrin increases the efficacy of FGF-2 stimulation of neurite outgrowth mediated by the FGF receptor, as an inhibitor of the FGF receptor abolished neurite outgrowth in the presence of agrin and FGF-2. We also examined possible mechanisms by which agrin may modulate neurite outgrowth, analyzing ERK phosphorylation and c-fos phosphorylation. These studies indicate that agrin augments a transient early phosphorylation of ERK in the presence of FGF-2, and augments and sustains FGF-2 mediated increases in c-fos phosphorylation. These data are consistent with established mechanisms where heparan sulfate proteoglycans such as agrin may increase the affinity between FGF-2 and the FGF receptor. In summary, our studies suggest that neural agrin contributes to the establishment of axon pathways by modulating the function of neurite promoting molecules such as FGF-2.  相似文献   

12.
A novel carbohydrate, 4-deoxy-L-threo-pentose (4-deoxyxylose), was synthesized by way of reductive dechlorination of a chlorodeoxy sugar. This carbohydrate, an analogue of xylose which is required for the initiation of glycosaminoglycan (GAG) synthesis, was used to explore the function of GAG side chains in neurite outgrowth on a laminin substrate. 4-Deoxyxylose inhibited the incorporation of 35SO4 into the GAGs of neuronal and astrocytic proteoglycans, with no effect being seen on the incorporation of [3H]glucosamine into proteoglycan. Direct analysis of the heparan sulphate fraction from such cells using nitrous acid digestion confirmed that the GAGs were undersulphated. No inhibition of either 35SO4 or [3H]glucosamine incorporation was observed in primary mouse hepatocytes exposed to 4-deoxyxylose. 4-Deoxyxylose produced a direct dose-dependent inhibition of neurite outgrowth by sensory neurons, and medium conditioned by neurons or astrocytes in the presence of 4-deoxyxylose displayed less laminin-complexed neurite-promoting activity than medium conditioned in its absence. These data suggest that 4-deoxyxylose inhibits neurite outgrowth by altering the sulphation of the GAGs of heparan sulphate proteoglycans.  相似文献   

13.
The electrogenic tissue of the electric eel Electrophorus electricus (L.) is distributed in three well-defined electric organs, the Main electric organ, Sach's organ and Hunter's organ. Sulfated glycosaminoglycan (GAG) composition was characterized in the three electric organs of the electric eel. Sulfated GAGs were analyzed in the electric organs using metachromatic staining, biochemical analysis including electrophoresis before and after specific enzymatic or chemical degradations, and immunostaining with an antibody against chondroitin sulfate (CS). Our results showed in the three electric organs that CS was the main sulfated GAG species detected, accompanied by small and diminutive amounts of CS/dermatan sulfate hybrid chains and heparan sulfate (HS), respectively. However, HS was not detected in the Sach's organ. CS was predominantly detected in the innervated membrane face of the electroplaques in the three electric organs. Our findings extend previous observations on the GAG composition in the electric organs of E. electricus and provide new information regarding the tissue distribution and location of CS.  相似文献   

14.
The heparin-binding neurotrophic factor midkine (MK) has been proposed to mediate neuronal cell adhesion and neurite outgrowth promotion by interacting with cell-surface heparan sulfate. We have observed that over-sulfated chondroitin sulfate (CS) D and CS-E show neurite outgrowth-promoting activity in embryonic day (E) 18 rat hippocampal neurons (Nadanaka, S., Clement, A., Masayama, K., Faissner, A., and Sugahara, K. (1998) J. Biol. Chem. 273, 3296-3307). In the present study, various CS isoforms were examined for their ability to inhibit the MK-mediated cell adhesion of cortical neuronal cells in comparison with heparin from porcine intestine and heparan sulfate from bovine kidney. E17-18 rat cortical neuronal cells were cultured on plates coated with recombinant MK in a grid pattern. The cells attached to and extended their neurites along the MK substratum. Cell adhesion was inhibited by squid cartilage over-sulfated CS-E as well as by heparin, but not by heparan sulfate or other CS isoforms. Direct interactions of MK with various glycosaminoglycans were then evaluated using surface plasmon resonance, showing that CS-E bound MK as strongly as heparin, followed by other over-sulfated CS isoforms, CS-H and CS-K. Furthermore, E18 rat brain extracts showed an E disaccharide unit, GlcUAbeta1-3GalNAc(4,6-O-disulfate). These findings indicate that CS chains containing the E unit as well as heparin-like glycosaminoglycans may be involved in the expression and/or modulation of the multiple neuroregulatory functions of MK such as neuronal adhesion and migration and promotion of neurite outgrowth.  相似文献   

15.
Filopodia sense the extracellular environment and direct movement in many cell types, including neurons. Recent reports suggest that the transmembrane form of the widely expressed proteoglycan agrin (TM-agrin) regulates formation and stability of neuronal filopodia. In order to elucidate the mechanism by which TM-agrin regulates filopodia, we investigated the role of agrin's glycosaminoglycan (GAG) chains in the induction of filopodia formation by TM-agrin over-expression in hippocampal neurons, and in the induction of filopodia-like processes in COS7 cells. Deletion of the GAG chains of TM-agrin sharply reduced formation of filopodia-like branched retraction fibers (BRFs) in COS7 cells, with deletion of the heparan sulfate GAG chains being most effective, and eliminated filopodia induction in hippocampal neurons. GAG chain deletion also reduced the activation of Cdc42 and Rac1 resulting from TM-agrin over-expression. Moreover, dominant-negative Cdc42 and Rac1 inhibited BRF formation. Lastly, over-expression of TM-agrin increased the adhesiveness of COS7 cells and this increase was reduced by deletion of the GAG chains. Our results suggest that TM-agrin regulates actin-based protrusions in large part through interaction of its GAG chains with extracellular or transmembrane proteins, leading to the activation of Cdc42 and Rac1.  相似文献   

16.
“Reactive” astrocytes and other glial cells in the injured CNS produce an altered extracellular matrix (ECM) that influences neuronal regeneration. We have profiled the glycosaminoglycan (GAG) component of proteoglycans (PGs) produced by reactive neonatal rat cortical astrocytes, and have quantified their neurite-outgrowth inhibitory activity. PGs extracted from cell layers and medium were fractionated on DEAE-Sephacel with a gradient of NaCl from 0.15 to 1.0 M. Monosaccharide analysis of the major peaks eluting at 0.6 M NaCl indicated an excess of GlcNH2 to GalNH2, suggesting an approximate HS/CS ratio of 6.2 in the cell layer and 4.2 in the medium. Chondroitinase ABC-generated disaccharide analysis of cell and medium PGs showed a > 5-fold excess of chondroitin 4-sulfate over chondroitin 6-sulfate. Heparin lyase-generated disaccharides characteristic of the highly sulfated S-domain regions within HS were more abundant in cell layer than medium-derived PGs. Cell layer and medium HS disaccharides contained ~ 20% and ~ 40% N-unsubstituted glucosamine respectively, which is normally rare in HS isolated from most tissues. NGF-stimulated neurite outgrowth assays using NS-1 (PC12) neuronal cells on adsorbed substrata of PGs isolated from reactive astrocyte medium showed pronounced inhibition of neurite outgrowth, and aggregation of NS-1 cells. Cell layer PGs from DEAE-Sephacel pooled fractions having high charge density permitted greater NGF-stimulated outgrowth than PGs with lower charge density. Our results indicate the synthesis of both inhibitory and permissive PGs by activated astrocytes that may correlate with sulfation patterns and HS/CS ratios.  相似文献   

17.
《The Journal of cell biology》1995,129(5):1391-1401
We have previously shown that the binding to cells of a monoclonal antibody directed against the chick neural retina N- acetylgalactosaminylphosphotransferase (GalNAcPTase) results in inhibition of cadherin-mediated adhesion and neurite outgrowth. We hypothesized that the antibody mimics the action of an endogenous ligand. Chondroitin sulfate proteoglycans (CSPGs) are potential ligands because they inhibit adhesion and neurite outgrowth and are present in situ at barriers to neuronal growth. We therefore assayed purified CSPGs for their ability to inhibit homophilic cadherin-mediated adhesion and neurite outgrowth, as well as their ability to bind directly to the GalNAcPTase. A proteoglycan with a 250-kD core protein following removal of chondroitin sulfate chains (250-kD PG) inhibits cadherin-mediated adhesion and neurite outgrowth whether presented as the core protein or as a proteoglycan monomer bearing chondroitin sulfate. A proteoglycan with a 400-kD core protein is not inhibitory in either core protein or monomer form. Treatment of cells with phosphatidylinositol-specific phospholipase C, which removes cell surface GalNAcPTase, abolishes this inhibitory effect. Binding of the 250-kD core protein to cells is competed by the anti-GalNAcPTase antibody 1B11, suggesting that 1B11 and the 250-kD core protein bind to the same site or in close proximity. Moreover, soluble GalNAcPTase binds to the immobilized 250-kD core protein but not to the immobilized 400-kD core protein. Concomitant with inhibition of cadherin mediated adhesion, binding of the 250-kD core protein to the GalNAcPTase on cells results in the enhanced tyrosine phosphorylation of beta-catenin and the uncoupling of N-cadherin from its association with the cytoskeleton. Moreover, the 250-kD PG is present in embryonic chick retina and brain and is associated with the GalNAcPTase in situ. We conclude that the 250-kD PG is an endogenous ligand for the GalNAcPTase. Binding of the 250-kD PG to the GalNAcPTase initiates a signal cascade, involving the tyrosine phosphorylation of beta-catenin, which alters the association of cadherin with the actin-containing cytoskeleton and thereby inhibits adhesion and neurite outgrowth. Regulation of the temporal and spatial expression patterns of each member of the GalNacPTase/250-kD PG interactive pair may create opportunities for interaction that influence the course of development through effects on cadherin-based morphogenetic processes.  相似文献   

18.
Dvl is a key protein that transmits the Wnt signal to the canonical beta-catenin pathway and the noncanonical planar cell polarity (PCP) pathway. We studied the roles of Rho-associated kinase (Rho-kinase), which is activated by Dvl in the PCP pathway of mammalian cells. The expression of Dvl-1, Wnt-1, or Wnt-3a activated Rho-kinase in COS cells, and this activation was inhibited by the Rho-binding domain of Rho-kinase. The expression of Dvl-1 in PC12 cells activated Rho and inhibited nerve growth factor (NGF)-induced neurite outgrowth. This inhibition was reversed by a Rho-kinase inhibitor but not by a c-Jun N-terminal kinase inhibitor. Dvl-1 also inhibited serum starvation-dependent neurite outgrowth of N1E-115 cells, and expression of the Rho-binding domain of Rho-kinase reversed this inhibitory activity of Dvl-1. Dvl-1 mutants that did not activate Rho-kinase did not inhibit the neurite outgrowth of N1E-115 cells. Furthermore, the purified Wnt-3a protein activated Rho-kinase and inhibited the NGF-dependent neurite outgrowth of PC12 cells. Wnt-3a-dependent neurite retraction was also prevented by a Rho-kinase inhibitor and a Dvl-1 mutant that suppresses Wnt-3a-dependent activation of Rho-kinase. These results suggest that Wnt-3a and Dvl regulate neurite formation through Rho-kinase and that PC12 and N1E-115 cells are useful for analyzing the PCP pathway.  相似文献   

19.
A protein fraction purified from bovine brain myelin, previously called arretin because of its ability to inhibit neurite outgrowth, has been identified as consisting predominantly of oligodendrocyte-myelin glycoprotein (OMgp). We show that it is a potent inhibitor of neurite outgrowth from rat cerebellar granule and hippocampal cells; from dorsal root ganglion explants in which growth cone collapse was observed; from rat retinal ganglion neurons; and from NG108 and PC12 cells. OMgp purified by a different procedure from both mouse and human myelin behaves identically in all bioassays tested.  相似文献   

20.
The role of cell adhesion molecules in neurite outgrowth on Müller cells   总被引:3,自引:0,他引:3  
The roles of neural cell adhesion molecule (NCAM), L1, N-cadherin, and integrin in neurite outgrowth on various substrates were studied. Antibodies against these cell surface molecules were added to explants of chick retina and the neurites from retinal ganglion cells were examined for effects of the antibodies on neurite length and fasciculation. On laminin, an anti-integrin antibody completely inhibited neurite outgrowth. The same antibody did not inhibit neurite outgrowth on polylysine or Müller cells. Antibodies to NCAM, L1, and N-cadherin did not significantly inhibit neurite outgrowth on laminin but produced significant inhibition on Müller cells. The inhibition of neurite outgrowth on glia by anti-L1 antibodies supports the hypothesis that L1 is capable of acting in a heterophilic binding mechanism. On laminin, both anti-N-cadherin and anti-L1 caused defasciculation of neurites from retinal ganglion cells, while anti-NCAM did not. None of these antibodies produced defasciculation on Müller cells. The results indicate that these three cell adhesion molecules may be very important in interactions with glia as axons grow from the retina to the tectum and may be less important in axon-axon interactions along this pathway. No evidence was found supporting the role of integrins in axon growth on Müller cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号