首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arbuscular mycorrhizal (AM) fungi are important root symbionts that enhance plant nutrient uptake and tolerance to pathogens and drought. While the role of plant dispersal in shaping successional vegetation is well studied, there is very little information about the dispersal abilities of AM fungi. We conducted a trap-box experiment in a recently abandoned quarry at 10 different distances from the quarry edge (i.e. the potential propagule source) over eleven months to assess the short term, within-year, arrival of plant and AM fungal assemblages and hence their dispersal abilities. Using DNA based techniques we identified AM fungal taxa and analyzed their phylogenetic diversity. Plant diversity was determined by transporting trap soil to a greenhouse and identifying emerging seedlings. We recorded 30 AM fungal taxa. These contained a high proportion of ruderal AM fungi (30% of taxa, 79% of sequences) but the richness and abundance of AM fungi were not related to the distance from the presumed propagule source. The number of sequences of AM fungi decreased over time. Twenty seven plant species (30% of them ruderal) were recorded from the soil seed traps. Plant diversity decreased with distance from the propagule source and increased over time. Our data show that AM fungi with ruderal traits can be fast colonizers of early successional habitats.  相似文献   

2.
We investigated whether arbuscular mycorrhizas influenced growth and survival of seedlings in an extremely impoverished and highly disturbed soil. Seedlings of four plants species native to the site were either inoculated with native sporocarpic arbuscular mycorrhizal (AM) fungi or fertilised prior to transplanting, and followed over 86 weeks at the site. One treatment was also irrigated with N-rich leachate from the site. In a laboratory experiment, seedlings were fertilised with excess P for 6 weeks, and location of the P store determined. Growth and survival of AM and fertilised seedlings were similar at the site. Inoculated mycorrhizal fungi and roots appeared to extend into the surrounding soil together. P concentration in leaves of all plants was extremely low. Irrigation with leachate increased growth of seedlings. In the laboratory experiment, significantly more P was stored in roots than shoots. We suggest that successful revegetation of extremely disturbed and impoverished sites requires selection of mycorrhizal fungi and plants to suit the edaphic conditions and methods of out-planting.  相似文献   

3.
Wu B  Hogetsu T  Isobe K  Ishii R 《Mycorrhiza》2007,17(6):495-506
Community structure of arbuscular mycorrhizal fungi (AMF), evaluated as spore samples and mycorrhizal roots of four herbaceous plant species, was investigated at different altitudes in a primary successional volcanic desert on Mount Fuji using molecular methods (fragment and sequence analysis of the large ribosomal subunit RNA gene). In total, 17 different AMF clades were identified, and most were members of the Glomaceae, Acaulosporaceae, and Gigasporaceae. The AMF community structures detected by spore sampling were inconsistent with those from plant roots. Of all AMF clades, six (35.3%) were detected only on the basis of spores, six (35.3%) only in roots, and five corresponded to both spores and roots (29.4%). Although an Acaulospora species was the most dominant among spores (67.1%), it accounted for only 6.8% in root samples. A species analysis of AMF communities at different altitudes demonstrated that AMF species diversity increased as altitude decreased and that the species enrichment at lower altitudes resulted from the addition of new species rather than species replacement. The inconsistencies in the species composition of spore communities with those in roots and the change in species diversity with altitude are discussed.  相似文献   

4.
Wu B  Isobe K  Ishii R 《Mycorrhiza》2004,14(6):391-395
Arbuscular mycorrhizal (AM) colonization was observed on four plant species in primary successional volcanic deserts on the Southeast slope of Mount Fuji. The AM colonization of the dominant species, Polygonum cuspidatum, contradicts the conclusion that Polygonaceae are often regarded as being non-mycorrhizal species. The secondary dominant species, Polygonum weyrichii var. alpinum, formed no mycorrhizas. The roots of Cirsium purpuratum, Clematis stans and Campanula punctata ssp. hondoensis, showed a higher percentage of AM colonization than P. cuspidatum. AM colonization and spore density in the rhizosphere soil of P. cuspidatum significantly decreased as elevation increased. AM colonization in roots of Cirsium purpuratum and Clematis stans also tended to decrease with increased altitudes. Cirsium purpuratum and Campanula punctata ssp. hondoensis formed single structural types of Arum- and Paris-type, respectively, whereas P. cuspidatum and Clematis stans formed both Arum- and Paris-type morphologies.  相似文献   

5.
 The influence of an arbuscular mycorrhizal (AM) fungus on phosphorus (P) and iron (Fe) uptake of peanut (Arachis hypogea L.) and sorghum (Sorghum bicolor L.) plants was studied in a pot experiment under controlled environmental conditions. The plants were grown for 10 weeks in pots containing sterilised calcareous soil with two levels of Fe supply. The soil was inoculated with rhizosphere microorganisms only or with rhizosphere microorganisms together with an AM fungus (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe). An additional small soil compartment accessible to hyphae but not roots was added to each pot after 6 weeks of plant growth. Radiolabelled P and Fe were supplied to the hyphae compartment 2 weeks after addition of this compartment. After a further 2 weeks, plants were harvested and shoots were analysed for radiolabelled elements. In both plant species, P uptake from the labelled soil increased significantly more in shoots of mycorrhizal plants than non-mycorrhizal plants, thus confirming the well-known activity of the fungus in P uptake. Mycorrhizal inoculation had no significant influence on the concentration of labelled Fe in shoots of peanut plants. In contrast, 59Fe increased in shoots of mycorrhizal sorghum plants. The uptake of Fe from labelled soil by sorghum was particularly high under conditions producing a low Fe nutritional status of the plants. These results are preliminary evidence that hyphae of an arbuscular mycorrhizal fungus can mobilise and/or take up Fe from soil and translocate it to the plant. Accepted: 6 March 1998  相似文献   

6.
7.
8.
The relationship between nitrification potential and nitrogen accumulation was studied in an early successional sere on Mt. Fuji. Soil organic nitrogen accumulated with the invasion ofPolygonum cuspidatum and successively withMiscanthus oligostachyus and other species. Laboratory incubation experiments showed a higher nitrification potential at theM. oligostachyus state. The numbers of nitrifying bacteria increased with the progress of succession. No significant difference in nitrate reductase activity was found between pioneer and succeeding species. The soil solution at theM. oligostachyus stage contained a lower level of nitrate than rainwater, while that of the bare ground and theP. cuspidatum stage contained a higher nitrate level than rainwater. It was concluded that the high nitrate levels in the soil solution of the bare ground and theP. cuspidatum stage were due to lower nitrate-absorbing activity, leading to loss of nitrogen with precipitation, while the lower nitrate levels at theM. oligostachyus stage when higher nitrification activity occurred were due to higher nitrate-absorbing activity, preventing net loss of nitrogen from the ecosystem.  相似文献   

9.
An established arbuscular mycorrhizal symbiosis suppresses further mycorrhization. It is not clear whether the observed suppressional effect is linked with the level of root colonization or not. In the present work we studied the effect of the degree of root colonization by the arbuscular mycorrhizal fungus Glomus mosseae on further root colonization by G. mosseae. At different time points barley plants grown in split-root compartments were pre-inoculated on one half of the split-root system with G. mosseae. Sequential inoculation resulted in different colonization levels. Thereafter, the second half of the split root system was inoculated. The results indicate an enhanced suppression of root colonization on the second side of the split-root system when colonization levels increased on the first side.  相似文献   

10.
In late‐successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser‐Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.  相似文献   

11.
喀斯特植被演替过程土壤丛枝菌根真菌(AMF)多样性   总被引:2,自引:0,他引:2  
喀斯特生态系统维持了丰富的微生物多样性,丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)结构和组成会随喀斯特植被演替而改变。以贵州贵阳花溪、毕节织金和关岭花江典型喀斯特区域按时空替代法采集了乔木林、灌木林和草本群落样地土壤,采用Illumina HiSeq分子测序技术,通过OTU聚类分析、物种注释及数据库比对,探索了喀斯特不同演替阶段土壤AMF物种多样性。结果表明:(1)喀斯特生境土壤获得球囊菌门Glomeromycota OTU为275个,分属于4目8科13属19种,属水平上AMF丰度表明根内根孢囊霉属Rhizophagus为优势属,花江拥有最高AMF丰富度,缩隔球囊霉Septoglomus constrictum、根内根孢囊霉Rhizophagus intraradices、Claroideoglomus sp. MIB8381和稀有内养囊霉Entrophospora infrequens均分布于各样地的不同植被演替阶段,为常见种。(2)AM真菌多样性Shannon指数与Simpson指数在不同演替阶段表现为花溪:乔木≈灌木草本(P0.05)、花江:灌木≈草本乔木(P0.05)、织金:乔木灌木草本,但差异不显著,Chao1和Abundance-based coverag estimator(ACE)指数表现为花江灌木≈草地乔木(P0.05)。(3)Spearman相关性分析表明土壤全磷与AMF ACE指数显著负相关,且与Chao1指数极显著负相关;速效磷与Shannon和Simpson指数显著负相关。(4)典范对应分析(Canonical Correlation Analysis,CCA)表明土壤全氮、速效氮、有机质、全磷和速效钾与AMF群落分布有显著相关性。结果表明喀斯特植被演替过程中土壤丛枝菌根真菌多样性随着演替进行或升高或降低,无一致变化规律,并与土壤理化性质关系密切,其中以磷的影响最大。  相似文献   

12.
13.
The source of nitrogen in the spores of arbuscular mycorrhizal (AM) fungi was quantified by a 15N-labeling technique. N was applied as coated urea to the soil and in solution to plant shoots. Soil-applied fertilizer had a significant effect on spore % 15N (P<0.01), with a 24–75% contribution to spore N. Fertilizer applied to either alfalfa shoots or bahia grass shoots had little effect on spore % 15N, accounting for 0–14% or 1–9% of spore N, respectively. These results indicate that AM fungi obtain spore N mostly from the soil. The small amount of spore N originating from shoot-applied N may have been obtained via root exudation. Accepted: 6 November 2000  相似文献   

14.
15.
Mycotrophy of previous crops has been shown to have an impact on arbuscular mycorrhizal fungi (AMF), and the growth and productivity of succeeding crops. We studied the impact of 3 years of cultivation of eight crops with different degrees of mycotrophy, including mycorrhizal (strawberry, rye, timothy, onion, caraway) and non-mycorrhizal (turnip rape, buckwheat, fiddleneck) hosts, as well as the impact of peat amendment, on the effectiveness, amount and diversity of indigenous AMF. A field experiment having a split-plot design with peat amendment as the main plot, crop cultivation as a sub-plot and three replications, was carried out on silt clay mineral soil in 1999–2001. A well-humified dark peat was applied immediately before establishment of the field experiment. Each year, the relative mycorrhizal effectiveness of soil collected in September, in terms of shoot dry weight (RMEDW), was determined in a bioassay. In the 3rd year of the experiment, AMF spores were also extracted and identified from the field soil. Expressed as the mean of 3 years of cropping in unamended soil, the mycorrhizal crops strawberry and caraway maintained RMEDW most effectively, while the values were lower in the non-host crops buckwheat, turnip rape and fiddleneck. In addition, the numbers of AM spores detected in soil were considerably greater during 3 years of strawberry cultivation. In soil under caraway, there were high numbers of AM spores compared to the other crops. In soil amended with peat, the situation was in some cases opposite of that of unamended soil; RMEDW was highest in rye and onion and lowest in strawberry and caraway. The reasons behind the negative impact of peat on mycorrhizal effectiveness in strawberry soil may be due to the microbiological properties of peat. The importance of including mycotrophic species in crop rotations for maintaining high soil quality and for increasing yields of subsequent crops is discussed.  相似文献   

16.
The effects of soil P amendments and time of application on the formation of external mycelium by different arbuscular mycorrhizal (AM) fungi were studied. In the first experiment the external mycelium produced in the soil by the AM fungus Glomus etunicatum Beck. and Gerd., during the early stages of root colonization (7 and 14 days after inoculation), was quantified by the soil-agar film technique. A Brazilian Oxisol was used with three different phosphate levels, varying from deficient to supra-optimal for the plant. Significant differences were observed in the phosphate and inoculation treatments for plant dry weight, P content in the tissue, root length and root colonization, at fourteen days after planting. At 7 days, mycelium growth, root colonization and their relationship were reduced at supra-optimal P concentrations. Applications of P one week after planting reduced mycelium growth and root colonization more than when applied to the soil before planting. In a second experiment the arbuscular mycorrhizal (AM) fungi, Scutellospora heterogama (Nicol. and Gerd.) Walker and Sanders and E3 were tested and compared with Glomus etunicatum. For the species studied, the length of external hyphae per unit of colonized root length was affected by small P additions but no further significant differences were observed at high P levels. The three AM endophytes showed marked differences in their response to P in the soil: Scutellospora heterogama, although producing external mycelium more profusely than the Glomus spp., showed a higher sensitivity to soil P supply.  相似文献   

17.
In this study, carried out in four water bodies in the Upper Paraná River floodplain, we assessed the occurrence of root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSF), as well as the AMF species richness associated with 24 species of aquatic macrophytes belonging to different life forms. AMF were found in nine species of macrophytes and DSF in 16 species among the 24 investigated. AM colonization occurred mainly in eudicotiledons (five of the six species evaluated) and the Paris morphology was the most common type. Co-occurrence of AMF and DSF was observed in seven species of macrophytes (Commelinaceae sp. 1, Limnobium laevigatum (H.B.K. ex Willd) Heine, Hygrophila cf. costata, Myriophyllum brasiliense (Camb), Polygonum acuminatum Kunth, P. ferrugineum Wedd and P. stelligerum Cham). Four species of macrophytes (Pistia stratiotes L., Eichhornia crassipes (Mart.) Solms, Egeria najas Planch and Nymphaea amazonum Mart. & Zucc) were not colonized by any type of fungi. In total, 27 morphotypes of AMF were recorded, and spores occurred both in the rhizosphere of macrophytes whose roots were internally colonized by AMF and in non-colonized macrophytes. Acaulospora delicata, Acaulospora aff. laevis, Acaulospora longula, Glomus lamellosum, Glomus luteum and NID 1 (a non-identified species) were the most frequent species. Samples collected close to the roots of N. amazonum had the highest AMF richness (20 species), but this plant was not colonized by fungi. A species richness curve indicated that more root-associated fungi than reported here are likely present in this floodplain.  相似文献   

18.
1. Collembolans have often been credited with negatively affecting arbuscular mycorrhizal (AM) symbioses, mainly by grazing and severing the associated external fungal network from host roots. However, most previous experiments were performed using relatively 'clean' systems where other, non-mycorrhizal, fungi were largely excluded. Yet, plant rhizospheres harbour a wide variety of highly palatable non-AM fungi, most of which have saprobic lifestyles.
2. In this study we isolated and cultured several rhizosphere fungi, and the collembolan , Folsomia candida , from the Long-Term Mycorrhiza Research Site, University of Guelph, Canada, to test the hypothesis that, given a choice, collembolans would prefer to feed on saprobic fungi and that such a choice is of adaptive significance to the animals.
3. A laboratory food preference experiment revealed that F. candida favours common saprobic fungi over a variety of AM fungi. Coincidentally, fecundity levels across two Folsomia generations were higher when animals fed exclusively on the preferred fungus, Alternaria alternata . When fed less palatable fungi, fecundity was greatly reduced; in fact animals from the F1 generation were unable to produce any eggs when placed on an exclusive diet of one of the following three AM fungi, Acaulospora spinosa, Scutellospora calospora and Gigaspora gigantea .
4. These results indicate that a strict diet of AM fungi by collembolans has reproductive consequences. Therefore, we propose that under natural conditions these animals spend more time feeding on common saprobic fungi rather than their AM counterparts. This suggests that previous 'clean' studies that investigated the interactions between collembolans and AM fungi may have reported exaggerated effects of animal grazing. The influence of collembolans on the functioning of AM symbioses, under more natural conditions, remains not well understood.  相似文献   

19.
Cadmium (Cd), a toxic metal released into agricultural settings induces numerous changes in plant growth and physiology. The main known mechanisms of Cd toxicity include its affinity for sulfhydryl groups in proteins and its ability to replace some essential metals in active sites of enzymes, thus causing inhibition of enzyme activities and protein denaturation. This article reviews detrimental effects of Cd toxicity on the functional biology of plants and summarizes the mechanisms that are activated by plants to prevent the absorption or to detoxify Cd ions such as synthesis of antioxidants, osmolytes, phytochelatins, metallothioneins, etc. Arbuscular mycorrhizal (AM) fungi are reported to be present on the roots of plants growing in metal-contaminated soils and play an important role in metal tolerance. Through mycorrhizal symbiosis, heavy metals are immobilized in the rhizosphere through precipitation in the soil matrix, adsorption onto the root surface or accumulation within roots, and compartmentalized in aboveground parts of the plant. This article unfolds the potential role of AM fungi in enhancing Cd tolerance of plants.  相似文献   

20.
 The effect of root exudates from P-deficient onion on root colonisation by an arbuscular mycorrhizal fungus was examined. Onions (Allium cepa L.) were grown in solution culture at phosphorus concentrations of 0 (P0) and 2 (P2) mg P l–1. Root exudates were collected and fractionated with Amberlite XAD-4 resin to give EtOH and water soluble fractions. Onions inoculated with the arbuscular mycorrhizal fungus Gigaspora margarita Becker & Hall were grown with or without (control) root exudates and exudate fractions in a growth chamber. After 24 days, arbuscular mycorrhiza levels and appressoria formation had increased in plants treated with P0-root exudate or the P0-EtOH fraction when compared to corresponding P2 treatments or control plants. P0 and P2 water-soluble fractions did not significantly affect either aspect of fungal development. These results suggest that hydrophobic compounds found in root exudates from P-deficient onion increase appressorium formation and, therefore, enhance mycorrhiza development. Accepted: 2 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号