首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: Modern termite phylogenetics is critically reviewed, with an emphasis on tree topologies as phylogenetic hypotheses. Studies have especially concentrated on (1) the position of Isoptera among the Dictyoptera and (2) the family group relationships within the Isoptera. The first of these problems is still controversial; although the weight of evidence now suggests that termites are nested within the cockroaches, thus making "Blattaria" as presently constituted paraphyletic. The exact position of termites within the cockroaches is uncertain, although Cryptocercus is the most plausible sister group.¶Family groups relationships are rather better resolved. Mastotermitidae is now generally accepted to be the most basal termite group. Termopsidae, Hodotermitidae and Kalotermitidae are all basal to (Termitidae + Serritermitidae + Rhinotermitidae), although their relative positions within that part of the tree are disputed. Most recent studies support a sister group relationship for Serritermitidae and (Termitidae + Rhinotermitidae). However, no study has yet unambiguously found the Rhinotermitidae monophyletic. The Termitidae are well established as monophyletic and as the most apical termite family. However, within the Termitidae the monophyly of none of the subfamilies is well established, making subfamily level analyses unreliable.¶A number of problem areas are identified: (1) poor taxon sampling is a universal problem, (2) higher taxonomic groupings are often assumed to be monophyletic a priori without adequate support, (3) datasets are collected from different taxa and character systems without consideration of the overall international effort.  相似文献   

2.
The frontal gland of termites is a structure without any equivalent among other animals. Although this gland is well known in soldiers, it received almost no attention in other castes. Recently, we described it in imagoes of Rhinotermitidae and Serritermitidae. In order to provide a complete picture of the evolution of this gland in termite imagoes, we studied it in additional 34 species of Termitidae, representing 7 of the 8 subfamilies. The frontal gland of these species is formed by class 1 secretory cells only, and occurs in two basic shapes: epithelial with reservoir in Foraminitermitinae and Macrotermitinae, and epithelial without reservoir in all other subfamilies. The size variability of the gland is high, not only among Termitidae subfamilies, but also within subfamilies. Our data suggest that the ancestral form of the frontal gland is epithelial with reservoir, as found in Rhinotermitidae, Serritermitidae, and basal Termitidae. The reduction of the reservoir occurred at least two times and the gland was lost two times independently: in Protermes sp. and in Microtermes toumodiensis (both Macrotermitinae).  相似文献   

3.
The first comprehensive combined molecular and morphological phylogenetic analysis of the major groups of termites is presented. This was based on the analysis of three genes (cytochrome oxidase II, 12S and 28S) and worker characters for approximately 250 species of termites. Parsimony analysis of the aligned dataset showed that the monophyly of Hodotermitidae, Kalotermitidae and Termitidae were well supported, while Termopsidae and Rhinotermitidae were both paraphyletic on the estimated cladogram. Within Termitidae, the most diverse and ecologically most important family, the monophyly of Macrotermitinae, Foraminitermitinae, Apicotermitinae, Syntermitinae and Nasutitermitinae were all broadly supported, but Termitinae was paraphyletic. The pantropical genera Termes, Amitermes and Nasutitermes were all paraphyletic on the estimated cladogram, with at least 17 genera nested within Nasutitermes, given the presently accepted generic limits. Key biological features were mapped onto the cladogram. It was not possible to reconstruct the evolution of true workers unambiguously, as it was as parsimonious to assume a basal evolution of true workers and subsequent evolution of pseudergates, as to assume a basal condition of pseudergates and subsequent evolution of true workers. However, true workers were only found in species with either separate- or intermediate-type nests, so that the mapping of nest habit and worker type onto the cladogram were perfectly correlated. Feeding group evolution, however, showed a much more complex pattern, particularly within the Termitidae, where it proved impossible to estimate unambiguously the ancestral state within the family (which is associated with the loss of worker gut flagellates). However, one biologically plausible optimization implies an initial evolution from wood-feeding to fungus-growing, proposed as the ancestral condition within the Termitidae, followed by the very early evolution of soil-feeding and subsequent re-evolution of wood-feeding in numerous lineages.  相似文献   

4.
Summary In Mastotermitidae, 3 sternal glands are observed on the 3rd, 4th and 5th abdominal segments. All other families only bear one gland, set on the 4th segment in Termopsidae and Hodotermitidae, and on the 5th in Kalotermitidae, Rhinotermitidae, Serritermitidae and Termitidae. This character may be useful for a phylogenetic analysis.  相似文献   

5.
A phylogenetic hypothesis of termite relationships was inferred from DNA sequence data. Seven gene fragments (12S rDNA, 16S rDNA, 18S rDNA, 28S rDNA, cytochrome oxidase I, cytochrome oxidase II and cytochrome b) were sequenced for 40 termite exemplars, representing all termite families and 14 outgroups. Termites were found to be monophyletic with Mastotermes darwiniensis (Mastotermitidae) as sister group to the remainder of the termites. In this remainder, the family Kalotermitidae was sister group to other families. The families Kalotermitidae, Hodotermitidae and Termitidae were retrieved as monophyletic whereas the Termopsidae and Rhinotermitidae appeared paraphyletic. All of these results were very stable and supported with high bootstrap and Bremer values. The evolution of worker caste and foraging behavior were discussed according to the phylogenetic hypothesis. Our analyses suggested that both true workers and pseudergates (“false workers”) were the result of at least two different origins. Our data support a traditional hypothesis of foraging behavior, in which the evolutionary transition from a one-piece type to a separate life type occurred through an intermediate behavioral form.  相似文献   

6.
Summary. Termite workers from all families examined had no arolia (=adhesive pads) on their tarsi and are unable to climb smooth vertical surfaces such as glass or polypropylene plastic. This contrasts with ants where both workers and alates of most species possess arolia and are able to climb these surfaces. Arolia were present in alates of the majority of species investigated from three of the four most basal termite families (Mastotermitidae, Termopsidae and Kalotermitidae), though absent from the basal family Hodotermitidae that contains only three genera. Alates in the two kalotermitid species tested readily climbed glass walls. The complete evolutionary loss of arolia from alates in the specious two most apical termite families (Rhinotermitidae and Termitidae) suggests paedomorphosis. Very smooth surfaces probably cannot be used to completely prevent entry of rhinotermitid termites into buildings because these termites can eventually build galleries of feces and soil over these surfaces. However, an experiment with Coptotermes formosanus showed that a smoother surface significantly slows down the rate of gallery building.Received 12 February 2004; revised 17 June 2004; accepted 29 June 2004.  相似文献   

7.
Abstract A molecular phylogeny of the fungus gnat family Mycetophilidae based on the nuclear 18S, 28S, and the mitochondrial 16S rRNA genes is presented. The total alignment included 58 taxa and 1704 bp. The family was recovered as monophyletic in parsimony and Bayesian analyses. In the Bayesian analysis, Mycetophilinae and its two tribes, Mycetophilini and Exechiini, were monophyletic with good statistical support. The subfamily Mycomyinae was found consistently in a sister‐group relationship to Mycetophilinae. Gnoristinae was rendered paraphyletic, subtending Mycomyinae and Mycetophilinae. Within Gnoristinae, the genera Coelosia Winnertz, Boletina Staeger, Gnoriste Meigen group with Docosia Winnertz, usually considered to be a member of Leiinae. No support was found for the monophyly of the subfamilies Sciophilinae and Leiinae.  相似文献   

8.
The guts of lower termites are inhabited by host‐specific consortia of cellulose‐digesting flagellate protists. In this first investigation of the symbionts of the family Serritermitidae, we found that Glossotermes oculatus and Serritermes serrifer each harbor similar parabasalid morphotypes: large Pseudotrichonympha‐like cells, medium‐sized Leptospironympha‐like cells with spiraled bands of flagella, and small Hexamastix‐like cells; oxymonadid flagellates were absent. Despite their morphological resemblance to Pseudotrichonympha and Leptospironympha, a SSU rRNA‐based phylogenetic analysis identified the two larger, trichonymphid flagellates as deep‐branching sister groups of Teranymphidae, with Leptospironympha sp. (the only spirotrichosomid with sequence data) in a moderately supported basal position. Only the Hexamastix‐like flagellates are closely related to trichomonadid flagellates from Rhinotermitidae. The presence of two deep‐branching lineages of trichonymphid flagellates in Serritermitidae and the absence of all taxa characteristic of the ancestral rhinotermitids underscores that the flagellate assemblages in the hindguts of lower termites were shaped not only by a progressive loss of flagellates during vertical inheritance but also by occasional transfaunation events, where flagellates were transferred horizontally between members of different termite families. In addition to the molecular phylogenetic analyses, we present a detailed morphological characterization of the new spirotrichosomid genus Heliconympha using light and electron microscopy.  相似文献   

9.
A cladistic analysis of embiopterans, based on 157 species (representing 70% of the known genera) and 186 morphological characters, is presented, as well as a molecular analysis for 22 taxa using genes encoding 16S, 18S and 28S rDNA and COI. Species of all known families are included, except Andesembiidae Ross (specimens of which are in a private collection). The evidence presented supports the monophyly of four of the families (Australembiidae, Oligotomidae, Teratembiidae, and Anisembiidae). Notoligotomidae is paraphyletic and included within the Afro‐neotropical family Archembiidae (which is also paraphyletic). The genera Embia, Cleomia, Macrembia, and Dihybocercus (Embiidae) form, together with Australembiidae, a group strongly supported by morphology; the position of the remaining genera of Embiidae has two quite different resolutions. Almost 80% of the genera of Anisembiidae recently described appear as either paraphyletic or polyphyletic. Contrary to the opinion of other specialists, the major groups as well as the monophyly of some families are supported by features which have been ignored in classical approaches to the systematics of Embioptera, such as the ovipositor and cephalic and leg structures, characters with an almost perfect fit.  相似文献   

10.
Abstract Leptophlebiidae is among the largest and most diverse groups of extant mayflies (Ephemeroptera), but little is known of family‐level phylogenetic relationships. Using two nuclear genes (the D2 + D3 region of 28S ribosomal DNA and histone H3) and maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI), we inferred the evolutionary relationships of 69 leptophlebiids sampled from six continents and representing 30 genera plus 11 taxa of uncertain taxonomic rank from Madagascar and Papua New Guinea. Although we did not recover monophyly of the Leptophlebiidae, monophyly of two of the three leptophlebiid subfamilies, Habrophlebiinae and Leptophlebiinae, was recovered with moderate to strong support in most analyses. The Atalophlebiinae was rendered paraphyletic as a result of the inclusion of members of Ephemerellidae or the Leptophlebiinae clade. For the species‐rich Atalophlebiinae, four groups of taxa were recovered with moderate to strong branch support: (i) an endemic Malagasy clade, (ii) a Paleoaustral group, a pan‐continental cluster with members drawn from across the southern hemisphere, (iii) a group, uniting fauna from North America, southeast Asia and Madagascar, which we call the Choroterpes group and (iv) a group uniting three New World genera, Thraulodes, Farrodes and Traverella. Knowledge of the phylogenetic relationships of the leptophlebiids will aid in future studies of morphological evolution and biogeographical patterns in this highly diverse and speciose family of mayflies.  相似文献   

11.
In this paper, the ultrastructure of the spermatozoon of Zootermopsis nevadensis (Isoptera, Hodotermitidae) and of some Rhinotermitidae and Termitidae is described. Zootermopsis sperm is rod like, aflagellate, immotile, and without an acrosome; it is composed of a filiform nucleus encircled by a monolayered microtubular manchette, and a few mitochondria. This spermatozoon was previously thought to be flagellate, and therefore the most primitive in Isoptera: our present study suggests a new phylogenetical position for Hodotermitidae. All the species of Rhinotermitidae and Termitidae studied by us show a similar spheroidal sperm model, devoid of acrosome, flagellum and manchette at spermatid stage, and are made up of only a round nucleus, two mitochondria and a centriole. This widely distributed model seems to be the more evolved in the order. The nature of sperm evolution in the Isoptera is considered.  相似文献   

12.
Extant genera of Characeae have been assigned to two tribes: Chareae (Chara, Lamprothamnium, Nitellopsis, and Lychnothamnus) and Nitelleae (Nitella and Tolypella), based on morphology of the thallus and reproductive structures. Character analysis of fossil and extant oogonia suggest that Tolypella is polyphyletic, the genus comprising two sections, one in each of the two tribes. Eleven morphological characters and sequence data for the Rubisco large subunit (rbcL) were used to reconstruct the phylogeny of genera, including the two sections of Tolypella. Parsimony analysis of the rbcL data, with all positions and changes weighted equally, strongly supports the monophyly of the Characeae. The two Tolypella sections form a robust monophyletic group basal to the family. Transversion weighting yielded the same tree but with a paraphyletic Tolypella. The rbcL data strongly support monophyly of tribe Chareae but tribe Nitelleae is paraphyletic. Parsimony analysis of morphological data produced one unrooted tree consistent with monophyly of the two tribes; on this tree the Tolypella sections were paraphyletic. Combining morphological with rbcL data did not change the results derived from rbcL sequences alone. The rbcL data support the monophyly of the Characeae and Coleochaete, which together form a monophyletic sister group to embryophytes.  相似文献   

13.
The families Termitidae and Rhinotermitidae are the most evolved and diverse groups of the social insects, termites (Order Isoptera), showing elaborated morphology and complex behavior. Molecular phylogeny of termites with the emphasis on these families was examined by Bayesian and maximum-likelihood analyses based on DNA sequence of mitochondrial cytochrome oxidase II (COII) gene of 31 genera sampled in Asia (mainly Thailand and Japan) along with those reported previously. Termitidae was monophyletic and originated from within polyphyletic Rhinotermitidae. Among the four subfamilies of Termitidae, Macrotermitinae was monophyletic suggesting a single common origin of fungus-growing habit characteristic for this subfamily, and was placed in the basal position in the family. A group consisting of other subfamilies Termitinae and Nasutitermitinae, though some important groups were still untouched, was the most apical but neither Termitinae nor Nasutitermitinae formed a monophyletic lineage. It was implied that, as defense systems of the soldier castes, the appearance of snapping mandibles has occurred at a single event, but the development of nasus for chemical secretion has probably not. Our tree provides some evidence concerning contradictions in the previously proposed phylogeny of termites.  相似文献   

14.
A morphology‐based phylogenetic analysis of the tribe Empoascini (Hemiptera: Cicadellidae: Typhlocybinae) is presented for 58 of 83 formerly recognized genera based on 99 morphological characters of adults. The results support excluding the New World Beamerana generic group from Empoascini. The remaining genera of Empoascini were recovered as a monophyletic sister group of Dikraneurini. Previously recognized tribes Jorumini and Helionini are derived from within Empoascini and are considered synonyms of the latter tribe. Three previously recognized informal generic groups, the Empoasca group, Alebroides group and Usharia group were paraphyletic but the Ficiana group was recovered as monophyletic based on five synapomorphies. Genera previously placed in the Alebroides group represent at least six independent lineages, indicating that the hind wing character separating this group from the Empoasca group (CuA and MP veins free) is highly homoplasious. Empoasca (sensu lato) is also paraphyletic. Thus, twelve previously recognized subgenera of Empoasca are elevated to genus status and five species groups of Empoasca from the New World are recognized as separate new genera. Sikkimasca Dworakowska, 1993 is treated as synonym of Marolda Dworakowska, 1977 based on the phylogeny. Biogeographic analysis suggests that Empoascini most likely first evolved in the Oriental region and spread to other biogeographic realms more recently by multiple independent invasions.  相似文献   

15.
Abstract Using data on the geographic range of 260 described species in the Atlas of Australian Termites, seven ‘regions’ with more complete data, across a wide range of latitudes were selected for further analysis. For these regions, mean species richness (± SE) was calculated for (i) all species from all families, (ii) Termitidae (197 spp.), (iii) Amitermes spp. (Termitidae, 58 spp.), (iv) all families excluding Amitermes spp. (139 spp.), (v) Termopsidae (5 spp.), (vi) Kalotermitidae (32 spp.) and (vii) Rhinotermitidae (25 spp.). In addition, we compared the Atlas data with species richness for five regions, across a comparable range of latitudes, based on the pooled species richness of described and un-described species given in community studies. No group of termites showed a consistent decline in species richness from tropical to temperate latitudes for either data set. The Atlas data showed similar total species richness from the tropics to the mediterranean southwest, before declining to lowest species richness at the highest latitudes. Species richness of Amitermes spp. and Rhinotermitidae was highest in the southwest. Termopsidae and Kalotermitidae showed no latitudinal pattern in species richness. Community studies showed highest and lowest total species richness in the southwest and at the highest latitudes (south-coastal Western Australia), respectively, and similar species richness from the tropics to arid central Australia. Species richness of. Amitermes spp. was highest in the southwest (31 spp.). Kalotermitidae and Rhinotermitidae showed no clear latitudinal pattern. The latitudinal patterns of species richness for the Australian termites is consistent with that for the Australian vertebrates and ants in that they differ from patterns established for these taxa on other continents.  相似文献   

16.
Endogenous endo-beta-1,4-glucanase (EGase, EC 3.2.1.4) cDNAs were cloned from representatives of the termite families Termitidae and Rhinotermitidae. These EGases are all composed of 448 amino acids and belong to glycosyl hydrolase family 9 (GHF9), sharing high levels of identity (40-52%) with selected bacterial, mycetozoan and plant EGases. Like most plant EGases, they consist of a single catalytic domain, lacking the ancillary domains found in most microbial cellulases. Using a PCR-based strategy, the entire sequence of the coding region of NtEG, a gene putatively encoding an EGase from Nasutitermes takasagoensis (Termitidae), was determined. NtEG consists of 10 exons interrupted by 9 introns and contains typical eukaryotic promoter elements. Genomic fragments of EGase genes from Reticulitermes speratus (Rhinotermitidae) were also sequenced. In situ hybridization of N. takasagoensis guts with an antisense NtEG RNA probe demonstrated that expression occurs in the midgut, which contrasts to EGase expression being detected only in the salivary glands of R. speratus. NtEG, when expressed in Escherichia coli, was shown to have in vitro activity against carboxymethylcellulose.  相似文献   

17.
Summary The leg exocrine gland was examined in two species of Neotropical termites. Scanning microscopy studies showed a set of pores on the ventral surface of the first and second tarsomeres in all legs ofSerritermes serrifer. InHeterotermes tenuis these pores are present on a sunken plate in all castes. To date, this gland has been observed only in Rhinotermitid species. The presence of leg exocrine gland provides additional evidence supporting a close phylogenetic relationship between the Serritermitidae and Rhinotermitidae.  相似文献   

18.
Social insects possess a rich set of exocrine organs producing diverse pheromones and defensive compounds. This is especially true for termite imagoes, which are equipped with several glands producing, among others, sex pheromones and defensive compounds protecting imagoes during the dispersal flight and colony foundation. Here, we describe the clypeal gland, a new termite exocrine organ occurring in the labro-clypeal region of imagoes of most Rhinotermitidae, Serritermitidae and Termitidae species. The clypeal gland of Coptotermes testaceus consists of class 1 (modified epidermal cell) and class 3 (bicellular gland unit) secretory cells. Ultrastructural features suggest that the gland secretes volatile compounds and proteins, probably after starting the reproduction. One peculiar feature of the gland is the presence of multiple secretory canals in a single canal cell, a feature never observed before in other insect glands. Although the function of the gland remains unknown, we hypothesize that it could produce secretion signalling the presence of functional reproductives or their need to be fed.  相似文献   

19.
We investigated the bacterial gut microbiota from 32 colonies of wood-feeding termites, comprising four Microcerotermes species (Termitidae) and four Reticulitermes species (Rhinotermitidae), using terminal restriction fragment length polymorphism analysis and clonal analysis of 16S rRNA. The obtained molecular community profiles were compared statistically between individuals, colonies, locations, and species of termites. Both analyses revealed that the bacterial community structure was remarkably similar within each termite genus, with small but significant differences between sampling sites and/or termite species. In contrast, considerable differences were found between the two termite genera. Only one bacterial phylotype (defined with 97% sequence identity) was shared between the two termite genera, while 18% and 50% of the phylotypes were shared between two congeneric species in the genera Microcerotermes and Reticulitermes, respectively. Nevertheless, a phylogenetic analysis of 228 phylotypes from Microcerotermes spp. and 367 phylotypes from Reticulitermes spp. with other termite gut clones available in public databases demonstrated the monophyly of many phylotypes from distantly related termites. The monophyletic “termite clusters” comprised of phylotypes from more than one termite species were distributed among 15 bacterial phyla, including the novel candidate phyla TG2 and TG3. These termite clusters accounted for 95% of the 960 clones analyzed in this study. Moreover, the clusters in 12 phyla comprised phylotypes from more than one termite (sub)family, accounting for 75% of the analyzed clones. Our results suggest that the majority of gut bacteria are not allochthonous but are specific symbionts that have coevolved with termites and that their community structure is basically consistent within a genus of termites.  相似文献   

20.
The aim of this paper was to further explore the phylogeny of Siphini by analysing molecular data (two mitochondrial genes and two nuclear markers), together with morphological (29) and ecological (two) characters, for comprehensive analyses concerning the evolution of Siphini, relationships within the tribe, and between Siphini and other Chaitophorinae. Nine Siphini species, which represent all the genera of this tribe, as well as 12 out‐group species (mainly Chaitophorini representatives of the genera Chaitophorus and Periphyllus), were used in the analyses. Molecular phylogenetic trees were reconstructed by the Bayesian inference (BI) phylogenetic analysis and maximum parsimony (MP) criterion. The cladistic analysis was performed using nona . The monophyly of Siphini was confirmed. Species belonging to subgenera Sipha and Rungsia were clustered together, and this clade was a sister with reference to a clade including the genera Atheroides and Chaetosiphella. Monophyly of Atheroides was confirmed by the molecular data; however, in cladistic analysis Atheroides seemed to be paraphyletic because Atheroides hirtellus was placed as sister to Atheroides serrulatus and Chaetosiphella. The monotypic genera Caricosipha and Laingia formed separate lineages, and Laingia was sister to all other Siphini. Chaitophorini was not retrieved by the molecular and combined data: Periphyllus was sister to a clade containing Chaitophorus and Siphini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号