首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.  相似文献   

2.
The ubiquitously expressed mammalian thioredoxin reductases are selenoproteins that together with NADPH regenerate active reduced thioredoxins and are involved in diverse actions mediated by redox control. Two main forms of mammalian thioredoxin reductases have been isolated, one cytosolic (TrxR1) and one present in mitochondria (TrxR2). Although the principal target for TrxRs is thioredoxin, the cytosolic form can regenerate several important antioxidants such as ascorbic acid, lipoic acid, and ubiquinone. In this study we demonstrate that cytochrome c is a substrate for both TrxR1 and TrxR2. In addition, cells overexpressing TrxR2 are more resistant to impairment of complex III in the mitochondrial respiratory chain upon both antimycin A and myxothiazol treatments, suggesting a complex III bypassing function of TrxR2. Furthermore, we show that cytochrome c is reduced by TrxR2 in vitro, not only by using NADPH as an electron donor but also by using NADH, pointing at TrxR2 as an important redox protein on complex III impairment. These findings may be valuable in understanding respiratory disorders in mitochondrial diseases.  相似文献   

3.
4.
Persistent pulmonary hypertension of the newborn (PPHN) results in right ventricular (RV) hypertrophy followed by right heart failure and an associated mitochondrial dysfunction. The phospholipid cardiolipin plays a key role in maintaining mitochondrial respiratory and cardiac function via modulation of the activities of enzymes involved in oxidative phosphorylation. In this study, changes in cardiolipin and cardiolipin metabolism were investigated during the development of right heart failure. Newborn piglets (<24 h old) were exposed to a hypoxic (10% O(2)) environment for 3 days, resulting in the induction of PPHN. Two sets of control piglets were used: 1) newborn or 2) exposed to a normoxic (21% O(2)) environment for 3 days. Cardiolipin biosynthetic and remodeling enzymes, mitochondrial complex II + III activity, incorporation of [1-(14)C]linoleoyl-CoA into cardiolipin precursors, and the tetralinoleoyl-cardiolipin pool size were determined in both the RV and left ventricle (LV). PPHN resulted in an increased heart-to-body weight ratio, RV-to-LV plus septum weight ratio, and expression of brain naturetic peptide in RV. In addition, PPHN reduced cardiolipin biosynthesis and remodeling in the RV and LV, which resulted in decreased tetralinoleoyl-cardiolipin levels and reduced complex II + III activity and protein levels of mitochondrial complexes II, III, and IV in the RV. This is the first study to examine the pattern of cardiolipin metabolism during the early development of both the RV and LV of the newborn piglet and to demonstrate that PPHN-induced alterations in cardiolipin biosynthetic and remodeling enzymes contribute to reduced tetralinoleoyl-cardiolipin and mitochondrial respiratory chain function during the development of RV hypertrophy. These defects in cardiolipin may play an important role in the rapid development of RV dysfunction and right heart failure in PPHN.  相似文献   

5.
An unidentified 30 kDa protein was co-purified with chick liver glutathione S-transferases from S-hexylglutathione affinity column. The protein was isolated to apparent homogeneity with chromatofocusing. The molecular mass of the protein was determined to be 30 277 ± 3 dalton by mass spectrometry. The protein was digested with Achromobacter proteinase I. Amino-acid sequence analyses of the resulting peptides show a high degree of identity with those of human carbonyl reductase. The protein is active with menadione as substrate. Thus, it is identified as chick liver carbonyl reductase.  相似文献   

6.
Loss of cardiomyocytes through programmed cell death is a key event in the development of heart failure, but the inciting molecular mechanisms are largely unknown. We used microarray analysis to identify a genetic program for myocardial apoptosis in Gq-mediated and pressure-overload cardiac hypertrophy. A critical component of this apoptotic program was Nix/Bnip3L. Nix localized to mitochondria and caused release of cytochrome c, activation of caspase-3 and apoptotic cell death, when expressed in HEK293 fibroblasts. A previously undescribed truncated Nix isoform, termed sNix, was not targeted to mitochondria but heterodimerized with Nix and protected against Nix-mediated apoptosis. Forced in vivo myocardial expression of Nix resulted in apoptotic cardiomyopathy and rapid death. Conversely, sNix protected against apoptotic peripartum cardiomyopathy in G(alpha)q-overexpressors. Thus, Nix/Bnip3L is upregulated in myocardial hypertrophy, and is both necessary and sufficient for Gq-mediated apoptosis of cardiomyocytes and resulting hypertrophy decompensation.  相似文献   

7.
The protein which can be labelled by low concentrations of dicyclohexylcarbodiimide in the Mr region of 30 000-35 000 has been purified from pig heart mitochondria with a high yield and as a single band of apparent Mr 35 000 in dodecyl sulphate-containing gels. The protein is not identical with the phosphate carrier as suggested before, since the two proteins behave differently during isolation. Incorporation of the isolated 35 kDa dicyclohexylcarbodiimide-binding protein into lipid bilayer membranes causes an increase of the membrane conductance in definite steps, due to the formation of pores. The specific pore-forming activity increases during the purification procedure. The single pore conductance is about 4.0 nS, suggesting a diameter of 1.7 nm of the open pore. The pore conductance is dependent on the voltage across the membrane. Anion permeability of the pore is higher than cation permeability. These properties are similar to those described for isolated mitochondrial and bacterial porins. It is concluded that the 35 kDa dicyclohexylcarbodiimide-binding protein from pig heart mitochondria is identical with porin from outer mitochondrial membrane.  相似文献   

8.
Mitochondrial respiratory chain complex I undergoes transitions from active to de-activated forms. We have investigated the phenomenon in sub-mitochondrial particles from Neurospora crassa wild-type and a null-mutant lacking the 29.9 kDa nuclear-coded subunit of complex I. Based on enzymatic activities, genetic crosses and analysis of mitochondrial proteins in sucrose gradients, we found that about one-fifth of complex I with catalytic properties similar to the wild-type enzyme is assembled in the mutant. Mutant complex I still displays active/de-active transitions, indicating that other proteins are involved in the phenomenon. However, the kinetic characteristics of complex I active/de-active transitions in nuo29.9 differ from wild-type. The spontaneous de-activation of the mutant enzyme is much slower, implicating the 29.9 kDa polypeptide in this event. We suggest that the fungal 29.9 kDa protein and its homologues in other organisms may modulate the active/de-active transitions of complex I.  相似文献   

9.
Integrin activation and focal complex formation in cardiac hypertrophy   总被引:12,自引:0,他引:12  
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.  相似文献   

10.
The ubiquinone-binding protein (QP-C) is a nuclear-encoded component of ubiquinol-cytochrome c oxidoreductase in the mitochondrial respiratory chain and plays an important role in electron transfer as a ubiquinone-QP-C complex. We obtained a partial cDNA for rat liver QP-C by screening a lambda gt11 rat liver cDNA library using antiserum directed against bovine heart QP-C. Using this cDNA as a probe, a cDNA clone was isolated from a human fibroblast cDNA library by colony hybridization. The total length of the cloned cDNA was 518 base pairs with an open reading frame of 333 base pairs. The 111-amino acid sequence deduced from the nucleotide sequence of the cDNA is 85% homologous to that of bovine QP-C and contains only a single additional amino-terminal methionine. This implies that the human QP-C is synthesized without a presequence which is required for import of most nuclear-encoded mitochondrial proteins into mitochondria.  相似文献   

11.
Cardiac hypertrophy, a risk factor for heart failure, is associated with enhanced oxidative stress in the mitochondria, resulting from high levels of reactive oxygen species (ROS). The balance between ROS generation and ROS detoxification dictates ROS levels. As such, disruption of these processes results in either increased or decreased levels of ROS. In previous publications, we have demonstrated that one of the primary functions of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is to control the mitochondrial redox balance, and thereby mediate the cellular defense against oxidative damage, via the production of NADPH. To explore the association between IDH2 expression and cardiac function, we measured myocardial hypertrophy, apoptosis, and contractile dysfunction in IDH2 knockout (idh2−/−) and wild-type (idh2+/+) mice. As expected, mitochondria from the hearts of knockout mice lacked IDH2 activity and the hearts of IDH2-deficient mice developed accelerated heart failure, increased levels of apoptosis and hypertrophy, and exhibited mitochondrial dysfunction, which was associated with a loss of redox homeostasis. Our results suggest that IDH2 plays an important role in maintaining both baseline mitochondrial function and cardiac contractile function following pressure-overload hypertrophy, by preventing oxidative stress.  相似文献   

12.
Resveratrol (RESV) is a polyphenol with pleiotropic effects that include reduction of oxidative stress and increased vascular nitric oxide (NO) production. However, whether or not RESV can prevent rises in blood pressure (BP) is controversial and remains to be firmly established. The purpose of this study was to determine whether RESV attenuates elevated BP and subsequent adaptive cardiac hypertrophy and to better understand the mechanisms involved. The spontaneously hypertensive rat (SHR) and the angiotensin (Ang)-II infused mouse were used as hypertensive models. Compared to a standard control diet, consumption of diets containing RESV by SHRs and Ang-II hypertensive mice, markedly prevented rises in systolic BP. In addition, flow-mediated vasodilation was significantly improved by RESV in SHRs. RESV also reduced serum and cardiac levels of the lipid peroxidation by-product, 4-hydroxy-2-nonenal in the hypertensive rodents and inhibited the production of superoxide in human-derived endothelial cells. Analysis of mesenteric arteries from SHRs and Ang-II infused mice demonstrated that RESV increased endothelial NO synthase (eNOS) phosphorylation by enhancing the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signal transduction pathway. Moreover, RESV reduced hypertrophic growth of the myocardium through reduced hemodynamic load and inhibition of the p70 S6 kinase pro-hypertrophic signaling cascade. Overall, we show that high dose RESV reduces oxidative stress, improves vascular function, attenuates high BP and prevents cardiac hypertrophy through the preservation of the LKB1–AMPK–eNOS signaling axis.  相似文献   

13.
14.
Maternal smoking during pregnancy is often associated with a decrease in placental function, which might lead to intrauterine growth retardation. Because tobacco is known to alter the mitochondrial respiratory function in cardiomyocytes and lung tissue, we hypothesized that placental mitochondrial function could be altered by maternal smoking. Placental mitochondria from 9 smoking and 19 nonsmoking mothers were isolated by differential centrifugation. Mitochondrial oxygen consumption was measured by polarography, and the enzymatic activity of each complex of the electron transport chain was assessed by spectrophotometry. In addition, the relative content in mitochondrial DNA (mtDNA) was determined by real-time quantitative PCR in placentas from seven smoking and seven nonsmoking mothers. We observed a 29% reduction in the enzymatic activity of complex III in the placental mitochondria from smokers compared with nonsmokers (P = 0.03). The relative content of mtDNA (with respect to the beta-globin gene) was reduced by 37% in the placental tissue from smokers compared with nonsmokers (P < 0.02). Both the enzymatic activity of complex III and mtDNA content were inversely related with the daily consumption of cigarettes, and mtDNA content was correlated with cord blood insulin-like growth factor-binding protein-3 (r = 0.74, P < 0.01), a marker of fetal growth. These results show that maternal smoking is associated with placental mitochondrial dysfunction, which might contribute to restricted fetal growth by limiting energy availability in cells.  相似文献   

15.
高血压大鼠心肌肥大及逆转过程中相关因素的探讨   总被引:4,自引:0,他引:4  
目的:探讨在心肌肥大及逆转过程中收缩压(SBP)、舒张压(DBP)、平均动脉压(MAP)、神经肽Y(NPY)等与左心室肥大的关系。方法:血压和心率用生物信号分析系统记录;NPY用放射免疫法测定,用SPSS软件求出了相关系数和回归方程。结果:SBP、DBP、MAP、心肌匀浆中NPY与心系数(LVW/BW)呈正相关,血液中NPY和心率(HR)与心系数不相关。结论:血压升高是导致左室肥大的因素之一,收缩压的影响大于舒张压;SBP、DBP、MAP、心肌匀浆中NPY与心系数(LVW/BW)有相关的趋势。  相似文献   

16.
Increased production of reactive oxygen species (ROS) by mitochondria is involved in oxidative damage to the organelle and in committing cells to apoptosis or senescence, but the mechanisms of this increase are unknown. Here we show that ROS production by mitochondrial complex I increases in response to oxidation of the mitochondrial glutathione pool. This correlates with thiols on the 51- and 75-kDa subunits of complex I forming mixed disulfides with glutathione. Glutathionylation of complex I increases superoxide production by the complex, and when the mixed disulfides are reduced, superoxide production returns to basal levels. Within intact mitochondria oxidation of the glutathione pool to glutathione disulfide also leads to glutathionylation of complex I, which correlates with increased superoxide formation. In this case, most of this superoxide is converted to hydrogen peroxide, which can then diffuse into the cytoplasm. This mechanism of reversible mitochondrial ROS production suggests how mitochondria might regulate redox signaling and shows how oxidation of the mitochondrial glutathione pool could contribute to the pathological changes that occur to mitochondria during oxidative stress.  相似文献   

17.
Mitochondrial supercomplexes containing complexes I, III, and IV of the electron transport chain are now regarded as an established entity. Supercomplex I·III·IV has been theorized to improve respiratory chain function by allowing quinone channeling between complexes I and III. Here, we show that the role of the supercomplexes extends beyond channeling. Mutant analysis in Caenorhabditis elegans reveals that complex III affects supercomplex I·III·IV formation by acting as an assembly or stabilizing factor. Also, a complex III mtDNA mutation, ctb-1, inhibits complex I function by weakening the interaction of complex IV in supercomplex I·III·IV. Other complex III mutations inhibit complex I function either by decreasing the amount of complex I (isp-1), or decreasing the amount of complex I in its most active form, the I·III·IV supercomplex (isp-1;ctb-1). ctb-1 suppresses a nuclear encoded complex III defect, isp-1, without improving complex III function. Allosteric interactions involve all three complexes within the supercomplex and are necessary for maximal enzymatic activities.  相似文献   

18.
The cleavable prepiece of the precursor to yeast cytochrome c oxidase subunit IV (an imported mitochondrial protein) was attached to the amino-terminus of mouse dihydrofolate reductase (a cytosolic protein) by gene fusion. The resulting fusion protein was imported into the matrix of isolated, energized yeast mitochondria and cleaved to a polypeptide whose size was similar to that of authentic dihydrofolate reductase.  相似文献   

19.
The influence of a low-sodium (LS) diet was assessed on the cardiac and renal alterations and pro-oxidant effect associated with a 10-day infusion of angiotensin II (200 or 400 ng. kg(-1). min(-1), osmotic pumps). Tail-cuff pressure (TCP), albuminuria, and renal blood flow were determined at the end of the experiments. Heart weight index (HWI) and production of superoxide anion (O(2)(-).) by the left ventricle and H(2)O(2) by the aorta was measured with the use of bioluminescence. Although the final TCP was similar in LS and normal sodium (NS) rats infused with high and low doses of angiotensin II, respectively, the increase in HWI was prevented by the LS diet. Sodium restriction reduced the rise in albuminuria without a change in the renal effect of angiotensin II. The increased production of O(2)(-). and H(2)O(2) observed in NS rats was abrogated in LS rats. The beneficial influence of dietary sodium restriction on target organ damage induced by angiotensin II is independent of arterial pressure reduction and possibly related to attenuation of the prooxidant effect of the peptide.  相似文献   

20.
The developmental origins of health and disease refer to the theory that adverse maternal environments influence fetal development and the risk of cardiovascular disease in adulthood. We used the chronically hypertensive atrial natriuretic peptide knockout (ANP?/?) mouse as a model of gestational hypertension, and attempted to determine the effect of gestational hypertension on left ventricular (LV) structure and function in adult offspring. We crossed normotensive ANP+/+ females with ANP?/? males (yielding ANP+/?WT offspring) and hypertensive ANP?/? females with ANP+/+ males (yielding ANP+/?KO offspring). Cardiac gene expression was measured using real-time quantitative PCR. Cardiac function was assessed using echocardiography. Daily injections of isoproterenol (ISO) were used to induce cardiac stress. Collagen deposition was assessed using picrosirius red staining. All mice were 10 weeks of age. Gestational hypertension resulted in significant LV hypertrophy in offspring, with no change in LV function. Treatment with ISO resulted in significant LV diastolic dysfunction with a restrictive filling pattern (increased E/A ratio and E/e′) and interstitial myocardial fibrosis only in ANP+/?KO and not ANP+/?WT offspring. Gestational hypertension programs adverse LV structural and functional remodeling in offspring. These data suggest that adverse maternal environments may increase the risk of heart failure in offspring later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号