首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increases in the second messenger cAMP are associated with receptor-mediated ATP release from erythrocytes. In other signaling pathways, cAMP-specific phosphodiesterases (PDEs) hydrolyze this second messenger and thereby limit its biological actions. Although rabbit and human erythrocytes possess adenylyl cyclase and synthesize cAMP, their PDE activity is poorly characterized. It was reported previously that the prostacyclin analog iloprost stimulated receptor-mediated increases in cAMP in rabbit and human erythrocytes. However, the PDEs that hydrolyze erythrocyte cAMP synthesized in response to iloprost were not identified. PDE3 inhibitors were reported to augment increases in cAMP stimulated by prostacyclin analogs in platelets and pulmonary artery smooth muscle cells. Additionally, PDE3 activity was identified in embryonic avian erythrocytes, but the presence of this PDE in mammalian erythrocytes has not been investigated. Here, using Western blot analysis, we determined that PDE3B is a component of rabbit and human erythrocyte membranes. In addition, we report that the preincubation of rabbit and human erythrocytes with the PDE3 inhibitors milrinone and cilostazol potentiates iloprost-induced increases in cAMP. In addition, cilostamide, the parent compound of cilostazol, potentiated iloprost-induced increases in cAMP in human erythrocytes. These findings demonstrate that PDE3B is present in rabbit and human erythrocytes and are consistent with the hypothesis that PDE3 activity regulates cAMP levels associated with a signaling pathway activated by iloprost in these cells.  相似文献   

2.
The regulation of the secondary messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is crucial in the hormonal regulation of bone metabolism. Both cAMP and cGMP are inactivated by cyclic nucleotide phosphodiesterases (PDEs), a superfamily of enzymes divided into 11 families (PDE1-11). We compared the PDEs of cultured human osteoblasts (NHOst) and SaOS-2 osteosarcoma cells. The PDE activity of NHOst cells consisted of PDE1, PDE3 and PDE7, whereas PDE1, PDE7 and PDE4, but no PDE3 activity was detected in SaOS-2 cells. In line with the difference in the PDE profiles, rolipram, a PDE4 inhibitor, increased the accumulation of cAMP in SaOS-2, but not in NHOst cells. Expression of PDE subtypes PDE1C, PDE3A, PDE4A, PDE4B, PDE7A and PDE7B was detected in both cell types. NHOst cells additionally expressed PDE1A.  相似文献   

3.
4.
Phosphodiesterases (PDEs) catalyze the hydrolysis of the second messengers cAMP and cGMP. However, little is known about how PDE activity regulates cyclic nucleotide signals in vivo because, outside of specialized cells, there are few methods with the appropriate spatial and temporal resolution to measure cyclic nucleotide concentrations. We have previously demonstrated that adenovirus-expressed, olfactory cyclic nucleotide-gated channels provide real-time sensors for cAMP produced in subcellular compartments of restricted diffusion near the plasma membrane (Rich, T.C., K.A. Fagan, H. Nakata, J. Schaack, D.M.F. Cooper, and J.W. Karpen. 2000. J. Gen. Physiol. 116:147-161). To increase the utility of this method, we have modified the channel, increasing both its cAMP sensitivity and specificity, as well as removing regulation by Ca(2)+-calmodulin. We verified the increased sensitivity of these constructs in excised membrane patches, and in vivo by monitoring cAMP-induced Ca(2)+ influx through the channels in cell populations. The improved cAMP sensors were used to monitor changes in local cAMP concentration induced by adenylyl cyclase activators in the presence and absence of PDE inhibitors. This approach allowed us to identify localized PDE types in both nonexcitable HEK-293 and excitable GH4C1 cells. We have also developed a quantitative framework for estimating the K(I) of PDE inhibitors in vivo. The results indicate that PDE type IV regulates local cAMP levels in HEK-293 cells. In GH4C1 cells, inhibitors specific to PDE types I and IV increased local cAMP levels. The results suggest that in these cells PDE type IV has a high K(m) for cAMP, whereas PDE type I has a low K(m) for cAMP. Furthermore, in GH4C1 cells, basal adenylyl cyclase activity was readily observable after application of PDE type I inhibitors, indicating that there is a constant synthesis and hydrolysis of cAMP in subcellular compartments near the plasma membrane. Modulation of constitutively active adenylyl cyclase and PDE would allow for rapid control of cAMP-regulated processes such as cellular excitability.  相似文献   

5.
The intracellular second messenger cyclic AMP (cAMP) is degraded by phosphodiesterases (PDE). The knowledge of individual families and subtypes of PDEs is considerable, but how the different PDEs collaborate in the cell to control a cAMP signal is still not fully understood. In order to investigate compartmentalized cAMP signaling, we have generated a membrane-targeted variant of the cAMP Bioluminiscence Resonance Energy Transfer (BRET) sensor CAMYEL and have compared intracellular cAMP measurements with it to measurements with the cytosolic BRET sensor CAMYEL in HEK293 cells. With these sensors we observed a slightly higher cAMP response to adenylyl cyclase activation at the plasma membrane compared to the cytosol, which is in accordance with earlier results from Fluorescence Resonance Energy Transfer (FRET) sensors. We have analyzed PDE activity in fractionated lysates from HEK293 cells using selective PDE inhibitors and have identified PDE3 and PDE10A as the major membrane-bound PDEs and PDE4 as the major cytosolic PDE. Inhibition of membrane-bound or cytosolic PDEs can potentiate the cAMP response to adenylyl cyclase activation, but we see no significant difference between the potentiation of the cAMP response at the plasma membrane and in cytosol when membrane-bound and cytosolic PDEs are inhibited. When different levels of stimulation were tested, we found that PDEs 3 and 10 are mainly responsible for cAMP degradation at low intracellular cAMP concentrations, whereas PDE4 is more important for control of cAMP at higher concentrations.  相似文献   

6.
Signaling in cells often involves co‐localization of the signaling molecules. Most experimental evidence has shown that intracellular compartmentalization restricts the range of action of the second messenger, 3'‐5'‐cyclic adenosine monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). The objective of this study is to understand the details of molecular encounter that may play a role in efficient operation of the cAMP signaling apparatus. The results from electrostatic potential calculations and Brownian dynamics simulations suggest that positive potential of the active site from PDE enhances capture of diffusing cAMP molecules. This electrostatic steering between cAMP and the active site of a PDE plays a major role in the enzyme‐substrate encounter, an effect that may be of significance in sequestering cAMP released from a nearby binding site or in attracting more freely diffusing cAMP molecules.  相似文献   

7.
Cherry JA  Pho V 《Chemical senses》2002,27(7):643-652
To characterize the potential role of cAMP in pheromone transduction, we have examined the occurrence of cyclic nucleotide phosphodiesterases (PDEs) in the mouse vomeronasal organ (VNO). We show that the cAMP-specific isoforms PDE4A and PDE4D are found preferentially in the apical and basal layers, respectively, of the VNO neuroepithelium and in the rostral (PDE4A) and caudal (PDE4D) portions of the accessory olfactory bulb glomerular layer. Assays for cAMP hydrolysis showed that PDE activity in VNO homogenates was about half that measured in the cerebral cortex and olfactory epithelium, and the proportion of total activity inhibited by rolipram, a PDE4-specific inhibitor, was approximately 40%. Activity in the VNO was enhanced 60% by Ca(2+) and calmodulin (CaM), implicating the presence of Ca(2+)/CaM-dependent PDE1. Zaprinast, which is known to inhibit PDE1C isoforms, completely suppressed Ca(2+)/CaM-stimulated activity and, together, zaprinast and rolipram inhibited cAMP hydrolysis by approximately 70%. Our results suggest that PDE1 and PDE4 isoforms are the primary source of cAMP degradation in the VNO.  相似文献   

8.
One of the defining properties of beta2-adrenergic receptor (beta(2)AR) signaling is the transient and rapidly reversed accumulation of cAMP. Here we have investigated the contribution of different PDE4 proteins to the generation of this transient response. To this aim, mouse embryonic fibroblasts deficient in PDE4A, PDE4B, or PDE4D were generated, and the regulation of PDE activity, the accumulation of cAMP, and CREB phosphorylation in response to isoproterenol were monitored. Ablation of PDE4D, but not PDE4A or PDE4B, had a major effect on the beta-agonist-induced PDE activation, with only a minimal increase in PDE activity being retained in PDE4D knock-out (KO) cells. Accumulation of cAMP was markedly enhanced, and the kinetics of cAMP accumulation were altered in their properties in PDE4DKO but not PDE4BKO cells. Modest effects were observed in PDE4AKO mouse embryonic fibroblasts. The return to basal levels of both cAMP accumulation and CREB phosphorylation was greatly delayed in the PDE4DKO cells, suggesting that PDE4D is critical for dissipation of the beta2AR stimulus. This effect of PDE4D ablation was in large part due to inactivation of a negative feedback mechanism consisting of the PKA-mediated activation of PDE4D in response to elevated cAMP levels, as indicated by experiments using the cAMP-dependent protein kinase inhibitors H89 and PKI. Finally, PDE4D ablation affected the kinetics of beta2AR desensitization as well as the interaction of the receptor with Galphai. These findings demonstrate that PDE4D plays a major role in shaping the beta2AR signal.  相似文献   

9.
N-terminal tandem GAF domains are present in 5 out of 11 mammalian phosphodiesterase (PDE) families. The ligand for the GAF domains of PDEs 2, 5, and 6 is cGMP, whereas those for PDEs 10 and 11 remained enigmatic for years. Here we used the cyanobacterial cyaB1 adenylyl cyclase, which has an N-terminal tandem GAF domain closely related to those of the mammalian PDEs, as an assay system to identify the ligands for the human PDEs 10 and 11 GAF domains. We report that a chimera between the PDE10 GAF domain and the cyanobacterial cyclase was 9-fold stimulated by cAMP (EC50= 19.8 microm), whereas cGMP had only low activity. cAMP increased Vmax in a non-cooperative manner and did not affect the Km for ATP of 27 microm. In an analogous chimeric construct with the tandem GAF domain of human PDE11A4, cGMP was identified as an allosteric activator (EC50 = 72.5 microm) that increased Vmax of the cyclase non-cooperatively 4-fold. GAF-B of PDE10 and GAF-A of PDE11A4 contain an invariant NKFDE motif present in all mammalian PDE GAF ensembles. We mutated the aspartates within this motif in both regions and found that intramolecular signaling was considerably reduced or abolished. This was in line with all data concerning GAF domains with an NKFDE motif as far as they have been tested. The data appeared to define those GAF domains as a distinct subclass within the >3100 annotated GAF domains for which we propose a tentative classification scheme.  相似文献   

10.
The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5′ AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response.  相似文献   

11.
The ability of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) to stimulate cAMP phosphodiesterase (PDE) activity in a liver Golgi-endosomal (GE) fraction was examined in vivo and in a cell-free system. Injection into rats of 4 beta-phorbol 12-myristate 13-acetate, a known activator of PKC, caused a rapid and marked increase in PKC activity (+325% at 10 min) in the GE fraction, along with an increase in the abundance of the PKC alpha-isoform as seen on Western immunoblots. Concurrently, 4 beta-phorbol 12-myristate 13-acetate treatment caused a time-dependent increase in cAMP PDE activity in the GE fraction (96% at 30 min). Addition of the catalytic subunit of protein kinase A (PKA) to GE fractions from control and 4 beta-phorbol 12-myristate 13-acetate-treated rats led to a comparable increase (130-150%) in PDE activity, suggesting that PKA is probably not involved in the in-vivo effect of 4 beta-phorbol 12-myristate 13-acetate. In contrast, addition of purified PKC increased (twofold) PDE activity in GE fractions from control rats but affected only slightly the activity in GE fractions from 4 beta-phorbol 12-myristate 13-acetate-treated rats. About 50% of the Triton-X-100-solubilized cAMP PDE activity in the GE fraction was immunoprecipitated with an anti-PDE3 antibody. On DEAE-Sephacel chromatography, three peaks of PDE were sequentially eluted: one early peak, which was stimulated by cGMP and inhibited by erythro-9 (2-hydroxy-3-nonyl) adenine (EHNA); a selective inhibitor of type 2 PDEs; and two retarded peaks of activity, which were potently inhibited by cGMP and cilostamide, an inhibitor of type 3 PDEs. Further characterization of peak I by HPLC resolved a major peak which was activated (threefold) by 5 microM cGMP and inhibited (87%) by 25 microM EHNA, and a minor peak which was insensitive to EHNA and cilostamide. 4 beta-Phorbol 12-myristate 13-acetate treatment caused a selective increase (2.5-fold) in the activity associated with DEAE-Sephacel peak I, without changing the K(m) value. These results suggest that PKC selectively activates a PDE2, cGMP-stimulated isoform in the GE fraction.  相似文献   

12.
Multiply regulated adenylyl cyclases (AC) and phosphodiesterases (PDE) can yield complex intracellular cAMP signals. Ca2+-sensitive ACs have received far greater attention than the Ca2+/calmodulin-dependent PDE (PDE1) family in governing intracellular cAMP dynamics in response to changes in the cytosolic Ca2+ concentration ([Ca2+]i). Here, we have stably expressed two isoforms of PDE1, PDE1A2 and PDE1C4, in HEK-293 cells to determine whether they exert different impacts on cellular cAMP. Fractionation and imaging showed that both PDEs occurred mainly in the cytosol. However, PDE1A2 and PDE1C4 differed considerably in their ability to hydrolyze cAMP and in their susceptibility to inhibition by the non-selective PDE inhibitor, IBMX and the PDE1-selective inhibitor, MMX. PDE1A2 had an approximately 30-fold greater Km for cAMP than PDE1C4 and yet was more susceptible to inhibition by IBMX and MMX than was PDE1C4. These differences were mirrored in intact cells when thapsigargin-induced capacitative Ca2+ entry (CCE) activated the PDEs. Mirroring their kinetic properties, PDE1C4 was active at near basal cAMP levels, whereas PDE1A2 required agonist-triggered levels of cAMP, produced in response to stimulation of ACs. The effectiveness of IBMX and MMX to inhibit PDE1A2 and PDE1C4 in functional studies was inversely related to their respective affinities for cAMP. To assess the impact of the two isoforms on cAMP dynamics, real-time cAMP measurements were performed in single cells expressing the two PDE isoforms and a fluorescent Epac-1 cAMP biosensor, in response to CCE. These measurements showed that prostaglandin E1-mediated cAMP production was markedly attenuated in PDE1C4-expressing cells upon induction of CCE and cAMP hydrolysis occurred at a faster rate than in cells expressing PDE1A2 under similar conditions. These results prove that the kinetic properties of PDE isoforms play a major role in determining intracellular cAMP signals in response to physiological elevation of [Ca2+]i and thereby provide a rationale for the utility of diverse PDE1 species.  相似文献   

13.
Cyclic nucleotide phosphodiesterases (PDEs) comprise a superfamily of enzymes that serve as drug targets in many human diseases. There is a continuing need to identify high-specificity inhibitors that affect individual PDE families or even subtypes within a single family. The authors describe a fission yeast-based high-throughput screen to detect inhibitors of heterologously expressed adenosine 3',5'-cyclic monophosphate (cAMP) PDEs. The utility of this system is demonstrated by the construction and characterization of strains that express mammalian PDE2A, PDE4A, PDE4B, and PDE8A and respond appropriately to known PDE2A and PDE4 inhibitors. High-throughput screens of 2 bioactive compound libraries for PDE inhibitors using strains expressing PDE2A, PDE4A, PDE4B, and the yeast PDE Cgs2 identified known PDE inhibitors and members of compound classes associated with PDE inhibition. The authors verified that the furanocoumarin imperatorin is a PDE4 inhibitor based on its ability to produce a PDE4-specific elevation of cAMP levels. This platform can be used to identify PDE activators, as well as genes encoding PDE regulators, which could serve as targets for future drug screens.  相似文献   

14.
15.
It has been shown that cyclic GMP (cGMP) modulates the inflammatory responses of macrophages, but the underlying molecular mechanisms are still poorly understood. Looking for proteins potentially regulated by cGMP in rat peritoneal macrophages (PMs), in this study we analyzed expression and activity of cGMP-hydrolyzing and cGMP-regulated phosphodiesterases (PDEs). It was found that freshly isolated peritoneal exudate macrophages (PEMs) express enzymes belonging to families PDE1-3, PDE5, PDE10, and PDE11. Analysis of substrate specificity, sensitivity to inhibitors, and subcellular localization showed that PDE2 and PDE3 are the main cGMP-regulated PDE isoforms in PEMs. The profile of PDE expression was altered by maintaining PEMs in culture and treatment with bacterial endotoxin (LPS). After 24 h culture, PDE5 was not present and the levels of PDE2, PDE3, and PDE11 were markedly decreased. However, their expression and activity was recovered after treatment of cultured cells with LPS. A similar pattern of changes was observed for the expression of TNFalpha, but not for guanylyl cyclase A (GC-A). LPS up-regulated PDE expression also in resident peritoneal macrophages (RPMs), although not all PDEs present in PEMs were detected in RPMs. Taken together, our results show that in rat PMs expression of cGMP-dependent PDEs positively correlates with the activation state of cells. Moreover, the fact that most of these PDEs hydrolyze also cAMP indicates that cGMP can play a role of potent regulator of cAMP signaling in macrophages.  相似文献   

16.
The superfamily of cyclic nucleotide phosphodiesterases is comprised of 11 gene families. By hydrolyzing cAMP and cGMP, PDEs are major determinants in the regulation of intracellular concentrations of cyclic nucleotides and cyclic nucleotide-dependent signaling pathways. Two PDE3 subfamilies, PDE3A and PDE3B, have been described. PDE3A and PDE3B hydrolyze cAMP and cGMP with high affinity in a mutually competitive manner and are regulators of a number of important cAMP- and cGMP-mediated processes. PDE3B is relatively more highly expressed in cells of importance for the regulation of energy homeostasis, including adipocytes, hepatocytes, and pancreatic β-cells, whereas PDE3A is more highly expressed in heart, platelets, vascular smooth muscle cells, and oocytes. Major advances have been made in understanding the different physiological impacts and biochemical basis for recruitment and subcellular localizations of different PDEs and PDE-containing macromolecular signaling complexes or signalosomes. In these discrete compartments, PDEs control cyclic nucleotide levels and regulate specific physiological processes as components of individual signalosomes which are tethered at specific locations and which contain PDEs together with cyclic nucleotide-dependent protein kinases (PKA and PKG), adenylyl cyclases, Epacs (guanine nucleotide exchange proteins activated by cAMP), phosphoprotein phosphatases, A-Kinase anchoring proteins (AKAPs), and pathway-specific regulators and effectors. This article highlights the identification of different PDE3A- and PDE3B-containing signalosomes in specialized subcellular compartments, which can increase the specificity and efficiency of intracellular signaling and be involved in the regulation of different cAMP-mediated metabolic processes.  相似文献   

17.
Cyclic nucleotides are recognized as critical mediators of many renal functions, including solute transport, regulation of vascular tone, proliferation of parenchymal cells, and inflammation. Although most studies have linked elevated cAMP levels to activation of protein kinase A, cAMP can also directly activate cyclic nucleotide gated ion channels and can signal through activation of GTP exchange factors. Cyclic AMP signaling is highly compartmentalized through plasma membrane localization of adenylyl cyclase and expression of scaffolding proteins that anchor protein kinase A to specific intracellular locations. Cyclic nucleotide levels are largely regulated through catabolic processes directed by phosphodiesterases (PDEs). The PDE superfamily is large and complex, with over 60 distinct isoforms that preferentially hydrolyze cAMP, cGMP, or both. PDEs contribute to compartmentalized cyclic nucleotide signaling. The unique cell- and tissue-specific distribution of PDEs has prompted the development of highly specific PDE inhibitors to treat a variety of inflammatory conditions. In experimental systems, PDE inhibitors have been employed to demonstrate functional compartmentalization of cyclic nucleotide signaling in the kidney. For example, mitogenesis in glomerular mesangial cells and normal tubular epithelial cells is negatively regulated by an intracellular pool of cAMP that is metabolized by PDE3, but not by other PDEs. In Madin-Darby canine kidney cells, an in vitro model of polycystic kidney disease, an intracellular pool of cAMP directed by PDE3 stimulates mitogenesis. In mesangial cells, an intracellular pool of cAMP directed by PDE4 inhibits reactive oxygen species and expression of the potent proin-flammatory cytokine monocyte chemoattractant protein 1. An intracellular pool of cGMP directed by PDE5 regulates solute transport. PDE5 inhibitors ameliorate renal injury in a chronic renal disease model. In this overview, we highlight recent studies to define relationships between PDE expression and renal function and to provide evidence that PDE inhibitors may be effective agents in treating chronic renal disease.  相似文献   

18.
Enzymes of the phosphodiesterase 3 (PDE3) and PDE4 families each regulate the activities of both protein kinases A (PKAs) and exchange proteins activated by cAMP (EPACs) in cells of the cardiovascular system. At present, the mechanisms that allow selected PDEs to individually regulate the activities of these two effectors are ill understood. The objective of this study was to determine how a specific PDE3 variant, namely PDE3B, interacts with and regulates EPAC1-based signaling in human arterial endothelial cells (HAECs). Using several biochemical approaches, we show that PDE3B and EPAC1 bind directly through protein-protein interactions. By knocking down PDE3B expression or by antagonizing EPAC1 binding with PDE3B, we show that PDE3B regulates cAMP binding by its tethered EPAC1. Interestingly, we also show that PDE3B binds directly to p84, a PI3Kγ regulatory subunit, and that this interaction allows PI3Kγ recruitment to the PDE3B-EPAC1 complex. Of potential cardiovascular importance, we demonstrate that PDE3B-tethered EPAC1 regulates HAEC PI3Kγ activity and that this allows dynamic cAMP-dependent regulation of HAEC adhesion, spreading, and tubule formation. We identify and molecularly characterize a PDE3B-based "signalosome" that integrates cAMP- and PI3Kγ-encoded signals and show how this signal integration regulates HAEC functions of importance in angiogenesis.  相似文献   

19.
Pulmonary hypertension (PHT) is associated with increased vascular resistance due to sustained contraction and enhanced proliferation of pulmonary arterial smooth muscle cells (PASMC); the abnormal tone and remodeling in the pulmonary vasculature may relate, at least in part, to decreased cyclic nucleotide levels. Cyclic nucleotide phosphodiesterases (PDEs), of which 11 families have been identified, catalyze the hydrolysis of cAMP and cGMP. We tested the hypothesis that PASMC isolated from patients with PHT, either idiopathic pulmonary arterial hypertension (IPAH) or secondary pulmonary hypertension (SPH), have increased expression and activity of PDE isoforms that reduce the responsiveness of agents that raise cellular cAMP. Real-time PCR and immunoblotting demonstrated that the expression of PDE1A, PDE1C, PDE3B, and PDE5A was enhanced in PASMC from both IPAH and SPH patients compared with control PASMC. Consistent with this enhanced expression of PDEs, agonist-stimulated cAMP levels were significantly reduced in IPAH and SPH PASMC unless a PDE inhibitor was present. The use of specific PDE inhibitors revealed that an increase in PDE1 and PDE3 activity largely accounted for reduced agonist-induced cAMP levels and increased proliferation in IPAH and SPH PASMC. Treatment with PDE1C-targeted small interference RNA enhanced cAMP accumulation and inhibited cellular proliferation to a greater extent in PHT PASMC than controls. The results imply that an increase in PDE isoforms, in particular PDE1C, contributes to decreased cAMP and increased proliferation of PASMC in patients with PHT. PDE1 isoforms may provide novel targets for the treatment of both primary and secondary forms of the disease.  相似文献   

20.
Stimulation of T cells through their antigen receptors (TCRs) causes a transient increase in the intracellular concentration of cyclic AMP (cAMP). However, sustained high levels of cAMP inhibit T-cell responses, suggesting that TCR signaling is coordinated with the activation of cyclic nucleotide phosphodiesterases (PDEs). The molecular basis of such a pathway is unknown. Here we show that TCR-dependent signaling activates PDE4B2 and that this enhances interleukin-2 production. Such an effect requires the regulatory N terminus of PDE4B2 and correlates with partitioning within lipid rafts, early targeting of this PDE to the immunological synapse, and subsequent accumulation in the antipodal pole of the T cell as activation proceeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号