首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle growth occurs during embryonic development and continues in adult life as regeneration. During embryonic muscle growth and regeneration in mature muscle, singly nucleated myoblasts fuse to each other to form myotubes. In muscle growth, singly nucleated myoblasts can also fuse to existing large, syncytial myofibers as a mechanism of increasing muscle mass without increasing myofiber number. Myoblast fusion requires the alignment and fusion of two apposed lipid bilayers. The repair of muscle plasma membrane disruptions also relies on the fusion of two apposed lipid bilayers. The protein dysferlin, the product of the Limb Girdle Muscular Dystrophy type 2 locus, has been shown to be necessary for efficient, calcium-sensitive, membrane resealing. We now show that the related protein myoferlin is highly expressed in myoblasts undergoing fusion, and is expressed at the site of myoblasts fusing to myotubes. Like dysferlin, we found that myoferlin binds phospholipids in a calcium-sensitive manner that requires the first C2A domain. We generated mice with a null allele of myoferlin. Myoferlin null myoblasts undergo initial fusion events, but they form large myotubes less efficiently in vitro, consistent with a defect in a later stage of myogenesis. In vivo, myoferlin null mice have smaller muscles than controls do, and myoferlin null muscle lacks large diameter myofibers. Additionally, myoferlin null muscle does not regenerate as well as wild-type muscle does, and instead displays a dystrophic phenotype. These data support a role for myoferlin in the maturation of myotubes and the formation of large myotubes that arise from the fusion of myoblasts to multinucleate myotubes.  相似文献   

2.
The mammalian ferlins are calcium-sensing, C2 domain-containing proteins involved in vesicle trafficking. Myoferlin and dysferlin regulate myoblast fusion and muscle membrane resealing, respectively. Correspondingly, myoferlin is most highly expressed in singly nucleated myoblasts, whereas dysferlin expression is increased in mature, multinucleated myotubes. Myoferlin also mediates endocytic recycling and participates in trafficking the insulin-like growth factor receptor. We have now characterized a novel member of the ferlin family, Fer1L5, because of its high homology to dysferlin and myoferlin. We found that Fer1L5 protein is expressed in small myotubes that contain only two to four nuclei. We also found that Fer1L5 protein binds directly to the endocytic recycling proteins EHD1 and EHD2 and that the second C2 domain in Fer1L5 mediates this interaction. Reduction of EHD1 and/or EHD2 inhibits myoblast fusion, and EHD2 is required for normal translocation of Fer1L5 to the plasma membrane. The characterization of Fer1L5 and its interaction with EHD1 and EHD2 underscores the complex requirement of ferlin proteins and mediators of endocytic recycling for membrane trafficking events during myotube formation.  相似文献   

3.
Mutations in the protein dysferlin, a member of the ferlin family, lead to limb girdle muscular dystrophy type 2B and Myoshi myopathy. The ferlins are large proteins characterised by multiple C2 domains and a single C-terminal membrane-spanning helix. However, there is sequence conservation in some of the ferlin family in regions outside the C2 domains. In one annotation of the domain structure of these proteins, an unusual internal duplication event has been noted where a putative domain is inserted in between the N- and C-terminal parts of a homologous domain. This domain is known as the DysF domain. Here, we present the solution structure of the inner DysF domain of the dysferlin paralogue myoferlin, which has a unique fold held together by stacking of arginine and tryptophans, mutations that lead to clinical disease in dysferlin.  相似文献   

4.
Dysferlin is a type II transmembrane protein implicated in surface membrane repair in muscle. Mutations in dysferlin lead to limb girdle muscular dystrophy 2B, Miyoshi Myopathy and distal anterior compartment myopathy. Dysferlin''s mode of action is not well understood and only a few protein binding partners have thus far been identified. Using affinity purification followed by liquid chromatography/mass spectrometry, we identified alpha-tubulin as a novel binding partner for dysferlin. The association between dysferlin and alpha-tubulin, as well as between dysferlin and microtubules, was confirmed in vitro by glutathione S-transferase pulldown and microtubule binding assays. These interactions were confirmed in vivo by co-immunoprecipitation. Confocal microscopy revealed that dysferlin and alpha-tubulin co-localized in the perinuclear region and in vesicular structures in myoblasts, and along thin longitudinal structures reminiscent of microtubules in myotubes. We mapped dysferlin''s alpha-tubulin-binding region to its C2A and C2B domains. Modulation of calcium levels did not affect dysferlin binding to alpha-tubulin, suggesting that this interaction is calcium-independent. Our studies identified a new binding partner for dysferlin and suggest a role for microtubules in dysferlin trafficking to the sarcolemma.  相似文献   

5.
《Journal of molecular biology》2019,431(11):2112-2126
Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin's activity is maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins are similar in size and domain structure; however, despite the overall similarity, myoferlin's known physiological functions do not overlap with those of dysferlin. Here we present for the first time the X‐ray crystal structure of human myoferlin C2A to 1.9 Å resolution bound to two divalent cations, and compare its three-dimensional structure and membrane binding activities to that of dysferlin C2A. We find that while dysferlin C2A binds membranes in a Ca2+-dependent manner, Ca2+ binding was the rate-limiting kinetic step for this interaction. Myoferlin C2A, on the other hand, binds two calcium ions with an affinity 3-fold lower than that of dysferlin C2A; and, surprisingly, myoferlin C2A binds only marginally to phospholipid mixtures with a high fraction of phosphatidylserine.  相似文献   

6.
Dysferlin is critical for repair of muscle membranes after damage. Mutations in dysferlin lead to a progressive muscular dystrophy. Recent studies suggest additional roles for dysferlin. We set out to study dysferlin's protein-protein interactions to obtain comprehensive knowledge of dysferlin functionalities in a myogenic context. We developed a robust and reproducible method to isolate dysferlin protein complexes from cells and tissue. We analyzed the composition of these complexes in cultured myoblasts, myotubes and skeletal muscle tissue by mass spectrometry and subsequently inferred potential protein functions through bioinformatics analyses. Our data confirm previously reported interactions and support a function for dysferlin as a vesicle trafficking protein. In addition novel potential functionalities were uncovered, including phagocytosis and focal adhesion. Our data reveal that the dysferlin protein complex has a dynamic composition as a function of myogenic differentiation. We provide additional experimental evidence and show dysferlin localization to, and interaction with the focal adhesion protein vinculin at the sarcolemma. Finally, our studies reveal evidence for cross-talk between dysferlin and its protein family member myoferlin. Together our analyses show that dysferlin is not only a membrane repair protein but also important for muscle membrane maintenance and integrity.  相似文献   

7.
Dysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology. Despite the importance of Ca2+ and membrane binding activities of the C2A domain for dysferlin function, the mechanism of the domain remains poorly characterized. In this study we find that the C2A domain preferentially binds membranes containing PI(4,5)P2 through an interaction mediated by residues Y23, K32, K33, and R77 on the concave face of the domain. We also found that subsequent to membrane binding, the C2A domain inserts residues on the Ca2+ binding loops into the membrane. Analysis of solution NMR measurements indicate that the domain inhabits two distinct structural states, with Ca2+ shifting the population between states towards a more rigid structure with greater affinity for PI(4,5)P2. Based on our results, we propose a mechanism where Ca2+ converts C2A from a structurally dynamic, low PI(4,5)P2 affinity state to a high affinity state that targets dysferlin to PI(4,5)P2 enriched membranes through interaction with Tyr23, K32, K33, and R77. Binding also involves changes in lipid packing and insertion by the third Ca2+ binding loop of the C2 domain into the membrane, which would contribute to dysferlin function in exocytosis and Ca2+ regulation.  相似文献   

8.
Myoferlin and dysferlin are members of the ferlin family of membrane proteins. Recent studies have shown that mutation or genetic disruption of myoferlin or dysferlin promotes muscular dystrophy-related phenotypes in mice, which are the result of impaired plasma membrane integrity. However, no biological functions have been ascribed to myoferlin in non-muscle tissues. Herein, using a proteomic analysis of endothelial cell (EC) caveolae/lipid raft microdomains we identified myoferlin in these domains and show that myoferlin is highly expressed in ECs and vascular tissues. The loss of myoferlin results in lack of proliferation, migration, and nitric oxide (NO) release in response to vascular endothelial growth factor (VEGF). Western blotting and surface biotinylation experiments show that loss of myoferlin reduces the expression level and autophosphorylation of VEGF receptor-2 (VEGFR-2) in native ECs. In a reconstituted cell system, transfection of myoferlin increases VEGFR-2 membrane expression and autophosphorylation in response to VEGF. In vivo, VEGFR-2 levels and VEGF-induced permeability are impaired in myoferlin-deficient mice. Mechanistically, myoferlin forms a complex with dynamin-2 and VEGFR-2, which prevents CBL-dependent VEGFR-2 polyubiquitination and proteasomal degradation. These data are the first to report novel biological activities for myoferlin and reveal the role of membrane integrity to VEGF signaling.  相似文献   

9.
Skeletal muscle is a multinucleated syncytium that develops and is maintained by the fusion of myoblasts to the syncytium. Myoblast fusion involves the regulated coalescence of two apposed membranes. Myoferlin is a membrane-anchored, multiple C2 domain-containing protein that is highly expressed in fusing myoblasts and required for efficient myoblast fusion to myotubes. We found that myoferlin binds directly to the eps15 homology domain protein, EHD2. Members of the EHD family have been previously implicated in endocytosis as well as endocytic recycling, a process where membrane proteins internalized by endocytosis are returned to the plasma membrane. EHD2 binds directly to the second C2 domain of myoferlin, and EHD2 is reduced in myoferlin null myoblasts. In contrast to normal myoblasts, myoferlin null myoblasts accumulate labeled transferrin and have delayed recycling. Introduction of dominant negative EHD2 into myoblasts leads to the sequestration of myoferlin and inhibition of myoblast fusion. The interaction of myoferlin with EHD2 identifies molecular overlap between the endocytic recycling pathway and the machinery that regulates myoblast membrane fusion.  相似文献   

10.
Two autosomal recessive muscle diseases, limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM), are caused by mutations in the dysferlin gene. These mutations result in poor ability to repair cell membrane damage, which is suggested to be the cause for this disease. However, many patients who share clinical features with MM-type muscular dystrophy do not carry mutations in dysferlin gene. To understand the basis of MM that is not due to mutations in dysferlin gene, we analyzed cells from patients in one such family. In these patients, we found no defects in several potential candidates - annexin A2, caveolin-3, myoferlin and the MMD2 locus on chromosome 10p. Similar to dysferlinopathy, these cells also exhibit membrane repair defects and the severity of the defect correlated with severity of their disease. However, unlike dysferlinopathy, none of the conventional membrane repair pathways are defective in these patient cells. These results add to the existing evidence that cell membrane repair defect may be responsible for MM-type muscular dystrophy and indicate that a previously unsuspected genetic lesion that affects cell membrane repair pathway is responsible for the disease in the non-dysferlin MM patients.  相似文献   

11.
Xu L  Pallikkuth S  Hou Z  Mignery GA  Robia SL  Han R 《PloS one》2011,6(11):e27884
Dysferlin was previously identified as a key player in muscle membrane repair and its deficiency leads to the development of muscular dystrophy and cardiomyopathy. However, little is known about the oligomerization of this protein in the plasma membrane. Here we report for the first time that dysferlin forms a dimer in vitro and in living adult skeletal muscle fibers isolated from mice. Endogenous dysferlin from rabbit skeletal muscle exists primarily as a ~460 kDa species in detergent-solubilized muscle homogenate, as shown by sucrose gradient fractionation, gel filtration and cross-linking assays. Fluorescent protein (YFP) labeled human dysferlin forms a dimer in vitro, as demonstrated by fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analyses. Dysferlin also dimerizes in living cells, as probed by fluorescence resonance energy transfer (FRET). Domain mapping FRET experiments showed that dysferlin dimerization is mediated by its transmembrane domain and by multiple C2 domains. However, C2A did not significantly contribute to dimerization; notably, this is the only C2 domain in dysferlin known to engage in a Ca-dependent interaction with cell membranes. Taken together, the data suggest that Ca-insensitive C2 domains mediate high affinity self-association of dysferlin in a parallel homodimer, leaving the Ca-sensitive C2A domain free to interact with membranes.  相似文献   

12.
Mutations in dysferlin gene cause several types of muscular dystrophy in humans, including the limb-girdle muscular dystrophy type 2B and the distal muscular dystrophy of Miyoshi. The dysferlin gene product is a membrane-associated protein belonging to the ferlins family of proteins. The function of the dysferlin protein and the cause of deterioration and regression of muscle fibres in its absence, are incompletely known. A functional clue may be the presence of six hydrophilic domains, C2, that bind calcium and mediate the interaction of proteins with cellular membranes. Dysferlin seems to be involved in the membrane fusion or repair. Molecular diagnosis of dysferlinopathies is now possible and the types of gene alterations that have been characterized so far include missense mutations, deletions and insertions.  相似文献   

13.
Ferlins are a family of transmembrane‐anchored vesicle fusion proteins uniquely characterized by 5–7 tandem cytoplasmic C2 domains, Ca2+‐regulated phospholipid‐binding domains that regulate vesicle fusion in the synaptotagmin family. In humans, dysferlin mutations cause limb‐girdle muscular dystrophy type 2B (LGMD2B) due to defective Ca2+‐dependent, vesicle‐mediated membrane repair and otoferlin mutations cause non‐syndromic deafness due to defective Ca2+‐triggered auditory neurotransmission. In this study, we describe the tissue‐specific expression, subcellular localization and endocytic trafficking of the ferlin family. Studies of endosomal transit together with 3D‐structured illumination microscopy reveals dysferlin and myoferlin are abundantly expressed at the PM and cycle to Rab7‐positive late endosomes, supporting potential roles in the late‐endosomal pathway. In contrast, Fer1L6 shows concentrated localization to a specific compartment of the trans‐Golgi/recycling endosome, cycling rapidly between this compartment and the PM via Rab11 recycling endosomes. Otoferlin also shows trans‐Golgi to PM cycling, with very low levels of PM otoferlin suggesting either brief PM residence, or rare incorporation of otoferlin molecules into the PM. Thus, type‐I and type‐II ferlins segregate as PM/late‐endosomal or trans‐Golgi/recycling ferlins, consistent with different ferlins mediating vesicle fusion events in specific subcellular locations.   相似文献   

14.
Dysferlin is a multi-C2 domain transmembrane protein involved in a plethora of cellular functions, most notably in skeletal muscle membrane repair, but also in myogenesis, cellular adhesion and intercellular calcium signaling. We previously showed that dysferlin interacts with alpha-tubulin and microtubules in muscle cells. Microtubules are heavily reorganized during myogenesis to sustain growth and elongation of the nascent muscle fiber. Microtubule function is regulated by post-translational modifications, such as acetylation of its alpha-tubulin subunit, which is modulated by the histone deacetylase 6 (HDAC6) enzyme. In this study, we identified HDAC6 as a novel dysferlin-binding partner. Dysferlin prevents HDAC6 from deacetylating alpha-tubulin by physically binding to both the enzyme, via its C2D domain, and to the substrate, alpha-tubulin, via its C2A and C2B domains. We further show that dysferlin expression promotes alpha-tubulin acetylation, as well as increased microtubule resistance to, and recovery from, Nocodazole- and cold-induced depolymerization. By selectively inhibiting HDAC6 using Tubastatin A, we demonstrate that myotube formation was impaired when alpha-tubulin was hyperacetylated early in the myogenic process; however, myotube elongation occurred when alpha-tubulin was hyperacetylated in myotubes. This study suggests a novel role for dysferlin in myogenesis and identifies HDAC6 as a novel dysferlin-interacting protein.  相似文献   

15.
Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene, encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B) and the second most common being LGMD. Symptoms generally appear at the end of childhood and, although disease progression is typically slow, walking impairments eventually result. Dysferlin is a modular type II transmembrane protein for which numerous binding partners have been identified. Although dysferlin function is only partially elucidated, this large protein contains seven calcium sensor C2 domains, shown to play a key role in muscle membrane repair. On the basis of this major function, along with detailed clinical observations, it has been possible to design various therapeutic approaches for dysferlin-deficient patients. Among them, exon-skipping and minigene transfer strategies have been evaluated at the preclinical level and, to date, represent promising approaches for clinical trials. This review aims to summarize the pathophysiology of dysferlinopathies and to evaluate the therapeutic potential for treatments currently under development.  相似文献   

16.
Dysferlin is expressed in skeletal and cardiac muscles. However, dysferlin deficiency results in skeletal muscle weakness, but spares the heart. We compared intraindividual mRNA expression profiles of cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and found down-regulation of the complement inhibitor, decay-accelerating factor/CD55, in skeletal muscle only. This finding was confirmed on mRNA and protein levels in two additional dysferlin-deficient mouse strains, A/J mice and Dysf-/- mice, as well as in patients with dysferlin-deficient muscular dystrophy. In vitro, the absence of CD55 led to an increased susceptibility of human myotubes to complement attack. Evidence is provided that decay-accelerating factor/CD55 is regulated via the myostatin-SMAD pathway. In conclusion, a novel mechanism of muscle fiber injury in dysferlin-deficient muscular dystrophy is demonstrated, possibly opening therapeutic avenues in this to date untreatable disorder.  相似文献   

17.
Mutations in the dysferlin gene cause the most frequent adult-onset limb girdle muscular dystrophy, LGMD2B. There is no therapy. Dysferlin is a membrane protein comprised of seven, beta-sheet enriched, C2 domains and is involved in Ca2+dependent sarcolemmal repair after minute wounding. On the protein level, point mutations in DYSF lead to misfolding, aggregation within the endoplasmic reticulum, and amyloidogenesis. We aimed to restore functionality by relocating mutant dysferlin. Therefore, we designed short peptides derived from dysferlin itself and labeled them to the cell penetrating peptide TAT. By tracking fluorescently labeled short peptides we show that these dysferlin-peptides localize in the endoplasmic reticulum. There, they are capable of reducing unfolded protein response stress. We demonstrate that the mutant dysferlin regains function in membrane repair in primary human myotubes derived from patients’ myoblasts by the laser wounding assay and a novel technique to investigate membrane repair: the interventional atomic force microscopy. Mutant dysferlin abuts to the sarcolemma after peptide treatment. The peptide-mediated approach has not been taken before in the field of muscular dystrophies. Our results could redirect treatment efforts for this condition.  相似文献   

18.
Mutations in the dysferlin gene are the cause of Limb-girdle Muscular Dystrophy type 2B and Miyoshi Myopathy. The dysferlin protein has been implicated in sarcolemmal resealing, leading to the idea that the pathophysiology of dysferlin deficiencies is due to a deficit in membrane repair. Here, we show using two different approaches that fulfilling membrane repair as asseyed by laser wounding assay is not sufficient for alleviating the dysferlin deficient pathology. First, we generated a transgenic mouse overexpressing myoferlin to test the hypothesis that myoferlin, which is homologous to dysferlin, can compensate for the absence of dysferlin. The myoferlin overexpressors show no skeletal muscle abnormalities, and crossing them with a dysferlin-deficient model rescues the membrane fusion defect present in dysferlin-deficient mice in vitro. However, myoferlin overexpression does not correct muscle histology in vivo. Second, we report that AAV-mediated transfer of a minidysferlin, previously shown to correct the membrane repair deficit in vitro, also fails to improve muscle histology. Furthermore, neither myoferlin nor the minidysferlin prevented myofiber degeneration following eccentric exercise. Our data suggest that the pathogenicity of dysferlin deficiency is not solely related to impairment in sarcolemmal repair and highlight the care needed in selecting assays to assess potential therapies for dysferlinopathies.  相似文献   

19.
Dysferlin is a large transmembrane protein composed of a C-terminal transmembrane domain, two DysF domains, and seven C2 domains that mediate lipid- and protein-binding interactions. Recessive loss-of-function mutations in dysferlin lead to muscular dystrophies, for which no treatment is currently available. The large size of dysferlin precludes its encapsulation into an adeno-associated virus (AAV), the vector of choice for gene delivery to muscle. To design mini-dysferlin molecules suitable for AAV-mediated gene transfer, we tested internally truncated dysferlin constructs, each lacking one of the seven C2 domains, for their ability to localize to the plasma membrane and to repair laser-induced plasmalemmal wounds in dysferlin-deficient human myoblasts. We demonstrate that the dysferlin C2B, C2C, C2D, and C2E domains are dispensable for correct plasmalemmal localization. Furthermore, we show that the C2B, C2C, and C2E domains and, to a lesser extent, the C2D domain are dispensable for dysferlin membrane repair function. On the basis of these results, we designed small dysferlin molecules that can localize to the plasma membrane and reseal laser-induced plasmalemmal injuries and that are small enough to be incorporated into AAV. These results lay the groundwork for AAV-mediated gene therapy experiments in dysferlin-deficient mouse models.  相似文献   

20.
The third human FER-1-like protein is highly similar to dysferlin   总被引:8,自引:0,他引:8  
Dysferlin, the protein product of the gene mutated in patients with an autosomal recessive limb-girdle muscular dystrophy type 2B (LGMD2B) and a distal muscular dystrophy, Miyoshi myopathy, is homologous to a Caenorhabditis elegans spermatogenesis factor, FER-1. Analysis of fer-1 mutants and of sequence predictions of the FER-1 and dysferlin ORFs has predicted a role in membrane fusion. Otoferlin, another human FER-1-like protein (ferlin), has recently been shown to be responsible for autosomal recessive nonsyndromic deafness (DFNB9). In this report we describe the third human ferlin gene, FER1L3, which maps to chromosome 10q23.3. Expression analysis of the orthologous mouse gene shows ubiquitous expression but predominant expression in the eye, esophagus, and salivary gland. All the ferlins are characterized by sequences corresponding to multiple C2 domains that share the highest level of homology with the C2A domain of rat synaptotagmin III. They are predicted to be Type II transmembrane proteins, with the majority of the protein facing the cytoplasm anchored by the C-terminal transmembrane domain. Sequence and predicted structural comparisons have highlighted the high degree of similarity of dysferlin and FER1L3, which have sequences corresponding to six C2 domains and which share more than 60% amino acid sequence identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号