首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness.  相似文献   

2.
Aim Studies on habitat fragmentation of insect communities mostly ignore the impact of the surrounding landscape matrix and treat all species equally. In our study, on habitat fragmentation and the importance of landscape context, we expected that habitat specialists are more affected by area and isolation, and habitat generalists more by landscape context. Location and methods The study was conducted in the vicinity of the city of Göttingen in Germany in the year 2000. We analysed butterfly communities by transect counts on thirty‐two calcareous grasslands differing in size (0.03–5.14 ha), isolation index (2100–86,000/edge‐to‐edge distance 55–1894 m), and landscape diversity (Shannon–Wiener: 0.09–1.56), which is correlated to percentage grassland in the landscape. Results A total of 15,185 butterfly specimens belonging to fifty‐four species are recorded. In multiple regression analysis, the number of habitat specialist (n = 20) and habitat generalist (n = 34) butterfly species increased with habitat area, but z‐values (slopes) of the species–area relationships for specialists (z = 0.399) were significantly steeper compared with generalists (z = 0.096). Generalists, but not specialists, showed a marginally significant increase with landscape diversity. Effects of landscape diversity were scale‐dependent and significant only at the smallest scale (landscape context within a 250 m radius around the habitat). Habitat isolation was not related to specialist and generalist species numbers. In multiple regression analysis the density of specialists increased significantly with habitat area, whereas generalist density increased only marginally. Habitat isolation and landscape diversity did not show any effects. Main conclusions Habitat area was the most important predictor of butterfly community structure and influenced habitat specialists more than habitat generalists. In contrast to our expectations, habitat isolation had no effect as most butterflies could cope with the degree of isolation in our study region. Landscape diversity appeared to be important for generalist butterflies only.  相似文献   

3.
Species are continuously lost and added to a local community. Dynamics of this process in a complex habitat mosaic (multiple habitats in a landscape), particularly of its rates (species turnover) are of primary concern for biodiversity conservation. Various studies suggest that species traits such as habitat specialization should affect species turnover. In communities where habitat specialization is a function of abiotic constraints, habitat specialists should respond faster to changing environment than generalists. We thus predicted a higher temporal turnover for specialists than for generalists in the presence of environmental variability (EV). In addition, we predicted that temporal turnover should decrease with increasing species richness of the communities they live in. We tested these predictions in a model system of 49 natural rock pools inhabited by 70 invertebrate species for which long-term (9 years) environmental and population dynamics data are available. We computed standard deviation of salinity measurements to represent EV for each pool. We further obtained the number of combined colonization and extinction events weighted by the number of years a species was recorded as a temporal turnover for each species in individual pools. We found that EV induced greater temporal turnover, however, the turnover depended on the species habitat traits (habitat specialization)—it has been higher in specialists but that relationship between EV and temporal turnover dissolved with increasing niche breadth (generalists). We further found that for some species, temporal turnover decreased with higher species richness and for other species, temporal turnover increased with higher species richness. The effect of species richness on temporal turnover was unrelated to species traits. This study suggests that whenever habitat is complex and heterogeneous and species pool diversified, local community dynamics becomes a composite of differential responses.  相似文献   

4.
Habitat loss and fragmentation, exacerbated by projected climate change, present the greatest threats to preservation of global biodiversity. As increasing habitat fragmentation and isolation of residual fragments exceeds the dispersal capacity of species, there is the growing need to address connectivity to maintain diversity. Traditionally, habitat corridors have been proposed as a solution. But, the concept of corridors (barriers) is poorly understood; typically they are defined as linear habitats linking up habitat patchwork, and are advocated without a detailed understanding of the elements making up species’ habitats and the cost-effectiveness of alternative solutions. Yet, landscapes comprise an enormous range of ‘linear’ structures that can function in different ways to promote species’ persistence and diversity. In this review, a functional definition of corridor (barrier) is developed to give prominence to connectivity as opposed to ad hoc structures purported to advance connectivity. In developing the concept, urgency to accommodate environmental changes compels a growing emphasis on organism diversity rather than a preoccupation with single species conservation. The review, in focusing on butterflies to address the issue of corridors for patchwork connectivity, draws attention to fundamental divisions among organisms in any taxon: generalists and specialists. Both groups benefit from large patches as these necessarily house species with specialist resources as well as generalists with very different resource types. But, generalists and specialists require very different solutions for connectivity, from short-range habitat corridors and gateways for specialists to habitat and resource stepping stones (nodes, surfaces) for generalists. Connectivity over extensive areas is most critical for moderate generalists and their conservation requires emphasis being placed on space–time resource heterogeneity; landscape features, of whatever dimensionality and structure, provide a vital framework for developing the variety of suitable conditions and resources for enhancing their diversity.  相似文献   

5.
Habitat loss and fragmentation affect species richness in fragmented habitats and can lead to immediate or time‐delayed species extinctions. Asynchronies in extinction and extinction debt between interacting species may have severe effects on ecological networks. However, these effects remain largely unknown. We evaluated the effects of habitat patch and landscape changes on antagonistic butterfly larvae–plant trophic networks in Mediterranean grasslands in which previous studies had shown the existence of extinction debt in plants but not in butterflies. We sampled current species richness of habitat‐specialist and generalist butterflies and vascular plants in 26 grasslands. We assessed the direct effects of historical and current patch and landscape characteristics on species richness and on butterfly larvae–plant trophic network metrics and robustness. Although positive species‐ and interactions–area relationships were found in all networks, structure and robustness was only affected by patch and landscape changes in networks involving the subset of butterfly specialists. Larger patches had more species (butterflies and host plants) and interactions but also more compartments, which decreased network connectance but increased network stability. Moreover, most likely due to the rescue effect, patch connectivity increased host‐plant species (but not butterfly) richness and total links, and network robustness in specialist networks. On the other hand, patch area loss decreased robustness in specialist butterfly larvae–plant networks and made them more prone to collapse against host plant extinctions. Finally, in all butterfly larvae–plant networks we also detected a past patch and landscape effect on network asymmetry, which indicates that there were different extinction rates and extinction debts for butterflies and host plants. We conclude that asynchronies in extinction and extinction debt in butterfly–plant networks provoked by patch and landscape changes caused changes in species richness and network links in all networks, as well as changes in network structure and robustness in specialist networks.  相似文献   

6.
Habitat loss and fragmentation are known to reduce patch sizes and increase their isolation, consequently leading to modifications in species richness and community structure. Calcareous grasslands are among the richest ecosystems in Europe for insect species. About 10% (1,150 ha) of the total area of a calcareous ridge region (Calestienne, Belgium) and its butterfly community was analysed over a timeframe of about 100 years. Since 1905 to present day (2005), the Calestienne region has undergone both calcareous grassland loss and fragmentation: not only did calcareous grassland size decrease and isolation increase, but also, the number of calcareous grassland patches within the landscape increased until 1965, and subsequently decreased, clearly reflecting the effects of fragmentation. These processes have had a profound effect on the butterfly community: extinction and rarefaction affected significantly more often specialist species, which means that generalist species are more and more overrepresented. This ecological drift, i.e. the replacement of specialists by generalists in species assemblages is likely to be a general effect of habitat loss and fragmentation on natural communities.  相似文献   

7.
The effects of habitat restoration measures designated to promote farmland biodiversity have been documented at the field scale, but little is known about their role in restoring the agricultural mosaic. In this study, we analyzed the effects of wildflower strips (WFS) at the field scale and in the landscape context on butterflies in a Swiss arable landscape. Three hypotheses were tested: (1) butterfly diversity and abundance are higher in WFS than in conventional fields; (2) butterfly diversity and abundance are enhanced by the amount, proximity and connectivity of WFS in the landscape context; (3) additional factors influence butterfly diversity and abundance according to individual site conditions and landscape context characteristics linked to other landscape elements. WFS had more species and individuals of butterflies than conventional habitats. However, promoted species were mainly generalists; few specialists were enhanced. The diversity of all butterflies and of generalists increased linearly with percent cover of WFS, reflecting an effect of restoration measures depending on the landscape context. The influence of proximity and connectivity of WFS were, however, not significant. The occurrence of specialists was conditioned by plant species richness, while the effect of WFS for overall diversity was affected by the amount of grassland in the surroundings. We conclude that to increase the effectiveness of biodiversity‐orientated restoration measures, their implementation should be steered toward increasing the share of WFS in the landscape. However, the combination of WFS with additional restoration measures might be needed to halt the decline of specialist species.  相似文献   

8.
We compared variation in butterfly communities across 3 years at six different habitats in a temperate ecosystem near Boulder, Colorado, USA. These habitats were classified by the local Open Space consortium as Grasslands, Tallgrass, Foothills Grasslands, Foothills Riparian, Plains Riparian, and Montane Woodland. Rainfall and temperature varied considerably during these years. We surveyed butterflies using the Pollard‐Yates method of invertebrate sampling and compared abundance, species richness, and diversity across habitats and years. Communities were most influenced by habitat, with all three quantitative measures varying significantly across habitats but only two measures showing variation across years. Among habitats, butterfly abundance was higher in Plains Riparian sites than in Montane Woodland or Grassland sites, though diversity was lowest in Plains Riparian areas. Butterfly species richness was higher in Foothills Riparian sites than it was in all but one other habitat (Tallgrass). Among years, butterfly abundance and species richness were lower during the year of least rainfall and highest temperatures, suggesting a substantial impact of the hot, dry conditions. Across habitats and years, butterfly abundance was consistently high at Plains Riparian and Foothills Riparian sites, and richness and diversity were consistently high in Foothills Riparian areas. These two habitats may be highly suitable for butterflies in this ecosystem, regardless of weather conditions. Generally low abundance and species richness in Montane Woodlands sites, particularly in 2002, suggested low suitability of the habitat to butterflies in this ecosystem, and this may be especially important during drought‐like conditions. Finally, to examine the effect that the presence of the very abundant non‐native species Pieris rapae L. (Lepidoptera: Pieridae) has on these communities, we re‐analyzed the data in the absence of this species. Excluding P. rapae dramatically reduced variation of both butterfly abundance and diversity across habitats, highlighting the importance of considering community membership in analyses like ours.  相似文献   

9.
Habitat loss, resource specialization, and extinction on coral reefs   总被引:6,自引:0,他引:6  
Coral reefs worldwide are being degraded because of global warming (coral bleaching) and coastal development (sedimentation and eutrophication). Predicting the risk of species extinctions from this type of habitat degradation is one of the most challenging and urgent tasks facing ecologists. Habitat specialists are thought to be more prone to extinction than generalists; however, specialists may be more susceptible to extinction because (1) they are specialists per se, (2) they are less abundant than generalists, or (3) both. Here, I show that declines in coral abundance lead to corresponding declines in the abundance of coral‐dwelling fishes, but with proportionally greater losses to specialists than generalists. In addition, specialists have smaller initial population sizes than generalists. Consequently, specialists face a dual risk of extinction because their already small populations decline more rapidly than those of generalists. Corresponding with this increased extinction risk, I describe the local extinction of one specialist species and the near‐global extinction of another species. I conclude that habitat specialists will be the first species lost from coral reefs because their small populations suffer the most from human‐induced disturbances.  相似文献   

10.
Habitat turnover concomitantly causes destruction and creation of habitat patches. Following such a perturbation, metapopulations harbor either an extinction debt or an immigration credit, that is the future decrease or increase in population numbers due to this disturbance. Extinction debt and immigration credit are rarely considered simultaneously and disentangled from the relaxation time (time to new equilibrium). In this contribution, we test the relative importance of two potential drivers of time-delayed metapopulation dynamics: the spatial configuration of the habitat turnover and species dispersal ability. We provide a simulation-based investigation projecting metapopulation dynamics following habitat turnover in virtual landscapes. We consider two virtual species (a short-distance and a long-distance disperser) and five scenarios of habitat turnover depending on net habitat loss or gain and habitat aggregation. Our analyses reveal that (a) the main determinant of the magnitude of the extinction debt or immigration credit is the net change in total habitat area, followed by species dispersal distance and finally by the post-turnover habitat aggregation; (b) relaxation time weakly depends on the magnitude of the immigration credit or of the extinction debt; (c) the main determinant of relaxation time is dispersal distance followed by the net change in total habitat area and finally by the post-turnover habitat aggregation. These results shed light on the relative importance of dispersal ability and habitat turnover spatial structure on the components of time-delayed metapopulation dynamics.  相似文献   

11.
12.
片断化生境中群落的物种组成常呈现嵌套分布格局。2013年7-8月, 我们在浙江舟山群岛采用截线法对28个岛屿上的蝴蝶群落进行了野外调查, 探讨了岛屿物种嵌套分布格局及其影响因素。通过测量采集标本获得蝶类的生活史特征(最小需求面积、翅展和体重), 查阅文献资料获得蝶类的栖息地特征(岛屿面积、距最近大陆距离和距最近大岛距离), 分析了影响蝶类群落嵌套结构的因素。研究结果显示: (1)舟山群岛蝶类群落符合嵌套分布格局; (2)岛屿面积和物种最小需求面积对嵌套格局的形成有显著影响; (3)舟山群岛蝶类群落嵌套格局的形成支持选择性灭绝假说; (4)随机检验零模型结果显示该嵌套分布格局并非采样偏差造成的。因此, 在制定舟山群岛区域蝶类保护措施时, 应优先考虑那些分布在面积较大岛屿的和最小需求面积较大的物种。  相似文献   

13.
1. Species richness in a habitat patch is determined by immigration (regional) and extinction (local) processes, and understanding their relative importance is crucial for conservation of biodiversity. In this study, we applied the Island Biogeography concept to spring ponds connected to a river in southwestern Japan to examine how immigration and extinction processes interact to determine fish species richness in temporally variable environments. 2. Fish censuses were conducted 15 times in 13 study ponds at 1–4 month intervals from August 1998 through October 2000. Effects of habitat size (pond area), isolation (distance from the river) and temporal environmental variability (water level fluctuation) on (i) species richness, (ii) immigration and extinction rates and (iii) population size and persistence of each fish species were assessed. 3. The results revealed predominant effects of distance on species richness, immigration/extinction rates and population size and persistence. Species richness decreased with increasing distance but was not related to either pond area or water level fluctuation. A negative effect of distance on immigration rate was detected, while neither pond area nor water level fluctuation had significant effects on extinction rate. Further, population size and persistence of four species increased with decreasing distance, suggesting that, in ponds close to the river, immigrants from the river reduce the probability of extinction (i.e. provide a rescue effect), contributing to the maintenance of high species richness. 4. Overall results emphasise the importance of immigration processes, rather than extinction, in shaping patterns of species richness in our system. The predominant importance of immigration was probably because of (i) high temporal variability that negates habitat‐size effects and (ii) continuous immigration that easily compensates for local extinctions. Our results suggest that consideration of regional factors (e.g. connectivity, locations of source populations and barriers to colonisation) is crucial for conservation and restoration of local habitats.  相似文献   

14.
1. The patterns of arthropod diversity were investigated in 24 montane wetlands in Switzerland. These differed in altitude, management regime (cattle-grazing vs. mowing), vegetation structure (index combining vegetation height and density) and degree of habitat fragmentation.
2. The general arthropod diversity was determined by net sampling at 10 sampling points per site. The diversity of grasshoppers and butterflies was measured by counting species richness at the site and species density (species richness per unit area) on transects. The species richness of grasshoppers and butterflies was found to be more sensitive to the geographical attributes of the site whereas species density was more affected by the habitat quality.
3. Grasshopper diversity decreased within the observed altitudinal range (800–1400 m) and was higher at grazed sites, whereas butterfly diversity was higher at mown sites. Arthropod diversity but not abundance of arthropods was positively related to the vegetation structure.
4. The species richness of butterflies was negatively influenced by the degree of habitat fragmentation: both the size of habitat as well as the area of wetland habitats within 4 km were related positively to the number of specialist wetland butterflies.
5. Late mowing as well as low-density cattle-grazing are appropriate management actions to maintain arthropod diversity in montane wetlands. In order to establish site-specific management plans, the biology of the present target species as well as the historical context should be considered.
6. We suggest that the best protection for the species examined in this study would be a network of wetland sites managed using a variety of traditional, non-intensive methods. This can only be achieved by coordinated planning of conservation measures among sites.  相似文献   

15.
Mobility is a key factor determining lepidopteran species responses to environmental change. However, direct multispecies comparisons of mobility are rare and empirical comparisons between butterflies and moths have not been previously conducted. Here, we compared mobility between butterflies and diurnal moths and studied species traits affecting butterfly mobility. We experimentally marked and released 2011 butterfly and 2367 moth individuals belonging to 32 and 28 species, respectively, in a 25 m × 25 m release area within an 11‐ha, 8‐year‐old set‐aside field. Distance moved and emigration rate from the release habitat were recorded by species. The release experiment produced directly comparable mobility data in 18 butterfly and 9 moth species with almost 500 individuals recaptured. Butterflies were found more mobile than geometroid moths in terms of both distance moved (mean 315 m vs. 63 m, respectively) and emigration rate (mean 54% vs. 17%, respectively). Release habitat suitability had a strong effect on emigration rate and distance moved, because butterflies tended to leave the set‐aside, if it was not suitable for breeding. In addition, emigration rate and distance moved increased significantly with increasing body size. When phylogenetic relatedness among species was included in the analyses, the significant effect of body size disappeared, but habitat suitability remained significant for distance moved. The higher mobility of butterflies than geometroid moths can largely be explained by morphological differences, as butterflies are more robust fliers. The important role of release habitat suitability in butterfly mobility was expected, but seems not to have been empirically documented before. The observed positive correlation between butterfly size and mobility is in agreement with our previous findings on butterfly colonization speed in a long‐term set‐aside experiment and recent meta‐analyses on butterfly mobility.  相似文献   

16.
Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.  相似文献   

17.
Current definitions of habitat are closely allied to the concept of patch and matrix. This concept is, for instance, central to the prevailing metapopulation models of population dynamics. But, butterfly population dynamics, mobility and spatial structure can only properly be understood in the context of a resource-based definition of habitats. In criticising current definitions of habitat, we illustrate how habitat is best understood in terms of resource distributions. These transcend vegetation-based definitions of habitat and lie at the root of life history strategies, the vulnerability of butterflies to environmental changes and extinction, and govern conservation status. We emphasise the need for a resource-use database and demonstrate the shortcomings of current data for conserving butterflies; patch based definitions of habitats are inappropriate for some species and for others do not provide a universal panacea, inadequately explaining spatial occurrence when scaled over space and time. A resource-based habitat definition challenges the bipolar, patch vs. matrix view of landscape; the alternative is to view landscape as a continuum of overlapping resource distributions. We urge greater attention to the details of butterfly behaviour and resource use as the keys to understanding how landscape is exploited and therefore to successful conservation at the landscape scale.  相似文献   

18.
【目的】生境类型和环境因子对物种分布和维持具有重要的影响。本研究通过分析不同生境类型对蝴蝶群落多样性及其群落结构影响的差异,以及环境因子对蝴蝶物种丰富度和多度的影响,为区域变动尺度蝴蝶多样性维持机制的研究奠定基础。【方法】于2019年8月和10月,在西双版纳地区采用样线法,调查了天然林、次生林、复合生境、人工林和农田5种生境中蝴蝶的物种,分析了蝴蝶群落多样性、群落结构相似性及物种丰富度和多度与环境因子的关系。【结果】2019年从西双版纳共采集蝴蝶2 226头,隶属于11科98属175种,在西双版纳州级尺度上蝴蝶物种丰富度高于县域尺度。在西双版纳州级尺度上,蝴蝶的物种丰富度和多度在5种生境间存在显著差异,而在县域尺度上,物种丰富度、多度和Chao 1物种丰富度估计值没有一致性规律。群落结构相似性结果显示,在西双版纳州级尺度上,蝴蝶群落结构在不同生境类型间存在极显著差异,在县域尺度上,仅勐腊区域蝴蝶群落结构在不同生境类型间存在显著差异。蝴蝶物种丰富度和多度不仅受到生境类型的影响,还受到温度、年均降水和海拔的影响。【结论】本研究结果表明,在区域变动尺度上,生境类型对西双版纳蝴蝶的多样性的影响较大,而温度、年均降水和海拔是维持蝴蝶物种多样性的重要因素。这些发现对当前人类导致的生境丧失和气候变化时代生物多样性的保护具有重要意义。  相似文献   

19.
The alteration and fragmentation of native tallgrass prairie in the Midwestern United States has created a need to identify other land types with the ability to support grassland butterfly species. This study examines butterfly usage of marginal grasslands, which consist of semi-natural grasslands existing within in a larger agricultural matrix, compared to grasslands managed for conservation of prairie species. Using generalized linear mixed models we analyzed how land purpose (marginal vs. conservation grasslands) affected butterfly abundance. We found grassland butterfly species to be significantly more common on conservation grasslands, whereas generalist species were significantly more common on marginal grasslands. Results of ordination analyses indicated that while many species used both types of habitats, butterfly species assemblages were distinct between habitat types and that edge to interior ratio and the floristic quality index of sites were important habitat characteristics driving this distinction. Within conservation grasslands we examined the relationship between butterfly abundance and the planting diversity used in restoring each site. We found higher diversity restorations hosted more individuals of butterflies considered habitat generalists, as well as species considered to be of conservation concern.  相似文献   

20.
Summary Many natural populations are subdivided among partially isolated habitat patches, but the influence of habitat patchiness per se on species immigration, extinction, and the resulting patterns of species diversity, has received virtually no experimental study. In an experiment designed to test the effects of habitat subdivision on local community structure, we compare the diversity and annual turnover of flowering plant species in 3 treatments of the same total area, but subdivided to different degrees. We experimentally fragmented a California winter annual grassland into isolated plots, two of 32 m2, eight of 8 m2, and 32 of 2 m2, each treatment representing a combined area of 64 m2. Insularization of the experimental habitat fragments is provided by grazing sheep. The effects of plot area on species diversity, extinction, and turnover are consistent with the MacArthur-Wilson model. Species richness increases with the degree of habitat subdivision. Extinction, immigration, and turnover, however, are relatively independent of the degree of subdivision. These experimental results contrast with predictions that habitat subdivision necessarily results in greater rates of extinction accompanied by reduced species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号