首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The complete nucleotide sequences of three cDNAs coding for the C-terminal part of mouse histocompatibility (H-2) antigens, and for the 3' non coding regions of these clones have been determined. Comparison of the sequence indicates a large homology throughout the coding and non-coding regions and suggests the existence of a genetic mechanism which homogenizes nucleotide sequences among genes of the H-2 multigene family.  相似文献   

2.
The major histocompatibility complex in man contains at least 20 class I genes. Included within this family are three closely linked loci with 11-47 codominant alleles that encode the classical transplantation antigens HLA-A, -B, and -C. The study of individual HLA-A, -B, and -C genes is complicated both by the high degree of sequence homology among all members of the class I gene family and by the high degree of polymorphism exhibited by HLA-A, -B, and -C genes. Identification of potential locus-specific regions suitable for use as unique probes has been limited by the small number of nucleotide sequences available for comparison. In the present study, the nucleotide sequences of two cDNA clones, designated HLA-4 and HLA-10, that encode previously unsequenced alleles of HLA-C and HLA-A genes, respectively, are compared with those of other class I genes. From these intergenic and interallelic comparisons, it was deduced that the nucleotide sequence encoding amino acids 291-299 of the transmembrane region showed sufficient divergence between loci and similarity between alleles, to be suitable for the generation of locus-specific probes. Synthetic oligonucleotides were generated and shown to be highly locus-specific in hybridization. These probes were used successfully for the quantitation of the relative amounts of mRNA transcribed in human liver from HLA-A, -B, and -C genes; they should greatly simplify future studies of restriction fragment length polymorphisms of HLA-A, -B, and -C alleles as genetic markers of disease susceptibility.  相似文献   

3.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M34961-2.  相似文献   

4.
Identification of members of the P-glycoprotein multigene family.   总被引:12,自引:5,他引:12       下载免费PDF全文
Overproduction of P-glycoprotein is intimately associated with multidrug resistance. This protein appears to be encoded by a multigene family. Thus, differential expression of different members of this family may contribute to the complexity of the multidrug resistance phenotype. Three lambda genomic clones isolated from a hamster genomic library represent different members of the hamster P-glycoprotein gene family. Using a highly conserved exon probe, we found that the hamster P-glycoprotein gene family consists of three genes. We also found that the P-glycoprotein gene family consists of three genes in mice but has only two genes in humans and rhesus monkeys. The hamster P-glycoprotein genes have similar exon-intron organizations within the 3' region encoding the cytoplasmic domains. We propose that the hamster P-glycoprotein gene family arose from gene duplication. The hamster pgp1 and pgp2 genes appear to be more closely related to each other than either gene is to the pgp3 gene. We speculate that the hamster pgp1 and pgp2 genes arose from a recent gene duplication event and that primates did not undergo this duplication and therefore contain only two P-glycoprotein genes.  相似文献   

5.
6.
We present the complete nucleotide sequence and the deduced amino acid sequence of the H-2Dp class I gene. This gene, which was cloned from a B10.P genomic DNA library, encodes and intact, functional H-2Dp molecule. Comparative analysis of the Dp sequence with other class I sequences reveals both similarities and differences. This analysis also shows that these genes exhibit D region-specific, locus-specific, as well as allele-specific sequences. The H-2Dp nucleotide sequence is greater than 90% homologous to the H-2Ld and H-2Db genes and only approximately 85% homologous to the H-2Dd gene. The K region and Qa region genes are less homologous. The 3' noncoding sequences appear to be region-specific. All of the previously described D region genes, Db, Ld, and Dd, possess the B2-SINE Alu-like repetitive sequence, as does Dp. Thus, this B2 repeat is a region-specific marker present in all D region genes studied so far. The additional polyadenylation site found in the H-2Dp gene starting at nucleotide 4671, which is homologous to non-D region sequences, as well as unique protein Dp coding sequences, make this gene an interesting model for studying the evolution of polymorphism and structure/function relationships in the class I gene family.  相似文献   

7.
8.
We have determined the nucleotide sequences of zein cDNA clones ZG14, ZG15, and ZG35. The three clones have 95 to 98% homology to the previously published sequence of clone A20, and 84% homology to sequences of the zein subfamily A30. Comparison of all sequences of the A30 and A20 subfamilies highlights the following features: the 5' nontranslated regions are 68 and 57 nucleotides in length for the A20- and A30-like mRNAs, respectively, and contain at least three repeats of the consensus sequence ACGAACAAta/gG; the majority of these genes are highly clustered as judged from pulsed-field gel electrophoresis of high molecular weight maize DNA. Furthermore, we discuss a model for the evolution of the multigene family which stresses the special importance of unequal crossingover and gene conversion in this system.  相似文献   

9.
10.
There is unequivocal evidence that a relatively nonpolymorphic class I gene (designated Q10) from the Qa region of inbred mice encodes a secreted class 1 molecule. We have used a cDNA probe specific for this gene and an antiserum specific for its secreted protein product to investigate the occurrence and expression of this gene in different species of wild mice broadly representing the entire genus Mus. Evidence is presented that a Q10-like gene has been conserved and is transcribed and translated throughout the genus, suggesting that it serves an important function. However, the data also show that some differences have appeared in this gene over the period of evolutionary time covered by this sampling of wild mice. These results indicate that a specific class I DNA probe isolated from inbred mice can be used to discriminate a particular gene among the multiple class I genes present in other species.  相似文献   

11.
12.
13.
14.
Stanley Sawyer's gene conversion detection method, implemented in his GENECONV computer program, was used to detect and characterize the gene conversions between the multigene family members of the yeast genome. This method gave different gene conversion frequencies and size distribution for gene families with two members and multigene families with more than two members. The 69 gene conversions detected in multigene families with more than two members occur at a frequency of 7.8% gene conversion/pair of genes compared and have an average size of 173+/-220 nucleotides. Larger gene conversions are found only between more similar genes, the genes involved in gene conversions are distributed almost randomly among the 16 yeast chromosomes, and the frequency of gene conversions increases as the distance between repeated genes decreases. In contrast to previous studies, no relationship was observed between the level of expression of a gene and its involvement in gene conversions. These analyses also suggest that gene conversions might occur by different mechanisms in closely linked genes and unlinked genes. The excess of converted regions at the 3? end of unlinked genes suggests that recombination with incomplete cDNA molecules is the main mechanism responsible for gene conversions between such genes.  相似文献   

15.
16.
In this paper we report the characterization of three novel members of the Arabidopsis shaggy-related protein kinase (ASK) multigene family, named ASKdzeta (ASK), ASKetha (ASK) and ASKiota (ASK). The proteins encoded by the ASK genes share a highly conserved catalytic protein kinase domain and show about 70% identity to SHAGGY (SGG) and glycogen synthase kinase-3 (GSK-3) from Drosophila and rat respectively. SGG is an ubiquitous intracellular component of the wingless signalling pathway that establishes cell fate and/or pattern formation in Drosophila. At least ten different ASK genes are expected to be present per haploid genome of A. thaliana. Different amino- and carboxy-terminal extensions distinguish different ASK family members. Five ASK gene sequences were analysed and shown to be present as single-copy genes in the Arabidopsis genome. A comparison based on the highly conserved catalytic domain sequences of all known sequences of the GSK-3 subfamily of protein kinases demonstrated a clear distinction between the plant and the animal kinases. Furthermore, we established the presence of at least three distinct groups of plant homologues of SGG/GSK-3. These different groups probably reflect biochemical and/or biological properties of these kinases. The differential expression patterns of five ASK genes were accessed by northern and in situ hybridization experiments using gene-specific probes. While ASK is expressed in the whole embryo during its development, ASK expression is limited to the suspensor cells. No signal was detected for ASK, ASK and ASK in developing embryos.  相似文献   

17.
T Nakayama  S Takechi  T Ohshige  K Kondo  K Yamamoto 《Gene》1991,108(2):311-312
The nucleotide sequences of two genes (H4-III and H4-IV) from the chicken H4 histone-encoding gene family have been determined. The four H4 genes, including the previously sequenced H4-I and H4-II genes, encode the same amino acid sequence and possess several copies of the possible Sp1-binding sequences on the coding and noncoding strands within the 5'-flanking regions.  相似文献   

18.
Molecular genetics studies often infer the occurrence of gene conversion events based on simple sequence similarity observations that do not include any statistical analyses. I show that the statistical significance of two previously proposed gene conversion events can easily be tested and point out that a variety of methods are available to perform gene conversion analyses. Received: 6 June 2001 / Accepted: 22 June 2001  相似文献   

19.
The regulation of major histocompatibility complex (MHC) class II gene expression is a key feature of the control of normal and abnormal immune responses. In humans, class II alpha - and beta-chain genes are organized in a multigene family with three distinct subregions, HLA-DR, -DQ, and -DP. The regulation of these genes is generally coordinated, and their promoters contain highly conserved motifs, in particular the X and Y boxes. We have identified five distinct proteins that bind to specific DNA sequences within the first 145 base pairs of the HLA-DR promoter, a segment known to be functionally essential for class II gene regulation. Among these, RF-X is of special interest, since mutants affected in the regulation of MHC class II gene expression have a specific defect in RF-X binding. Unexpectedly, RF-X displays a characteristic gradient of binding affinities for the X boxes of three alpha-chain genes (DRA greater than DPA much greater than DQA). The same observation was made with recombinant RF-X. We also describe a novel factor, NF-S, which bound to the spacer region between the X and Y boxes of class II promoters. NF-S exhibited a reverse gradient of affinity compared with RF-X (DQA greater than DPA much greater than DRA). As expected, RF-X bound well to the mouse IE alpha promoter, while NF-S bound well to IA alpha. The drastic differences in the binding of RF-X and NF-S to different MHC class II promoters contrasts with the coordinate regulation of HLA-DR, -DQ, and -DP genes.  相似文献   

20.
Sequences of the dnaK gene, coding for the 70-kDa heat shock protein (HSP70), were determined for six members of the order Planctomycetales, including representatives of three genera, and for the only cultivated member of the order Verrucomicrobiales, Verrucomicrobium spinosum. A fragment of the dnaK gene was amplified from these strains by PCR with oligonucleotide primers targeting regions of the dnaK gene that are conserved at the amino acid level, and the resulting PCR products were cloned into a plasmid vector. Sequence analysis of the cloned dnaK fragments revealed the presence of two different types of dnaK sequence in one of the planctomycete strains, Planctomyces maris, and in V. spinosum. Only one type of dnaK sequence was found for each of the remaining strains. Phylogenetic analysis of the partial sequence data suggested that the majority of planctomycete strains, including one of the Planctomyces maris sequences, form a coherent phylogenetic group branching adjacent to other main lines of descent within the domain Bacteria, as has been shown previously by 16S rRNA sequence analysis. One of the two V. spinosum dnaK sequences also appears to constitute a separate lineage within the gram-negative bacteria. Each of the remaining sequences from P. maris and V. spinosum, together with the single sequence obtained from Planctomyces limnophilus, appeared to be unrelated to the other planctomycete sequences and to occupy a position distant from that of other gram-negative bacteria. The phylogenetic diversity of dnaK sequences exhibited by P. maris and V. spinosum was comparable to that found in Synechococcus sp. strain PCC7942 and Escherichia coli, the only other prokaryotes for which a dnaK multigene family has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号