首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinophytes acquired chloroplasts obviously early in evolution and later lost them multiple times. Most families and genera contain both photosynthetic and heterotrophic species. Chloroplasts enveloped by three membranes with thylakoids in stacks of three, containing peridinin as the main pigment, are regarded as the original dinophyte plastids. Pyrenoids are generally present. Stigmata, if present, are usually parts of the chloroplast or are modified original plastids. The form II type RUBISCO found in the dinophytes is unique for eukaryotes, otherwise known only in some anaerobic bacteria. It is disputed whether the original dinophyte chloroplasts are derived from a prokaryotic or an eukaryotic endosymbiosis. Various dinoflagellates contain aberrant chloroplasts. Glenodinium foliaceum and Peridinium balticum have a single complete endosymbiont, originally a pcnnate diatom. Podolampas bipes houses several dictyophycean symbiont cells. The “symbionts” of Lepidodiniurn viride and Gymnodinium chlorophorum are highly reduced prasinophyte cells. The chloroplasts of Gymnodinium mikimotoi have aberrant pigments (fucoxanthin derivatives, no peridinin) and fine structure. The dinoflagellate hosts do not seem to contain any parts of the former endosymbiont except the chloroplasts. Photosynthetic Dinophysis species have cryptophycean-like chloroplasts, whereas symbiotic cyanobacteria are found in other members of the Dinophysiales, e.g., Ornithocercus. Various dinophytes, e.g. Gymnodinium aeruginosum, use kleptochloroplasts from ingested cryptophytes transiently for photosynthesis. Original or secondarily acquired chloroplasts can only be used for phylogenetic considerations in exceptionally cases: it seems unlikely that the Prorocentrales have evolved from the Dinophysiales because all Prorocentrales possess original dinoflagellate chloroplasts, whereas no member of the Dinophysiales has such chloroplasts.  相似文献   

2.
Those amazing dinoflagellate chromosomes   总被引:2,自引:0,他引:2  
Rizzo PJ 《Cell research》2003,13(4):215-217
Dinoflagellates are a very large and diverse group of eukaryotic algae that play a major role in aquaticfood webs of both fresh water and marine habitats. Moreover, the toxic members of this group posea health threat in the form of red tides. Finally, dinoflagellates are of great evolutionary importance,because of their taxonomic position, and their unusual chromosome structure and composition. While the cytoplasm of dinoflagellates is typically eukaryotic, the nucleus is unique when compared to the nucleusof other eukaryotes. More specifically, while the chromosomes of all other eukaryotes contain histones,dinoflagellate chromosomes lack histones completely. There are no known exceptions to this observation: all dinoflagellates lack histones, and all other eukaryotes contain histones. Nevertheless, dinoflagellates remain a relatively unstudied group of eukaryotes.  相似文献   

3.
Takishita K  Ishida K  Maruyama T 《Protist》2004,155(4):447-458
Although most photosynthetic dinoflagellates have plastids with peridinin, the three dinoflagellate genera Karenia, Karlodinium, and Takayama possess anomalously pigmented plastids that contain fucoxanthin and its derivatives (19′-hexanoyloxy-fucoxanthin and 19′-butanoyloxy-fucoxanthin) instead of the peridinin. This pigment composition is similar to that of haptophytes. All peridinin-containing dinoflagellates investigated so far have at least two types of glyceraldehyde-3-phosphate dehydrogenase (GAPDH): cytosolic and plastid-targeted forms. In the present study, we cloned and sequenced genes encoding cytosolic and plastid-targeted GAPDH proteins from three species of the fucoxanthin derivative-containing dinoflagellates. Based on the molecular phylogeny, the plastid-targeted GAPDH genes of the fucoxanthin derivative-containing dinoflagellates were closely related to those of haptophyte algae rather than to the peridinin-containing dinoflagellates, while one of several cytosolic versions from the peridinin- and the fucoxanthin derivative-containing dinoflagellates are closely related to each other. Considering a previously reported theory that the plastid-targeted GAPDH from the peridinin-containing dinoflagellates originated by a gene duplication of the cytosolic form before the splitting of the dinoflagellate lineage, it is highly likely that the plastid-targeted GAPDH gene of the peridinin-containing dinoflagellates is original in this algal group and that in the fucoxanthin-containing dinoflagellates, the original plastid-targeted GAPDH was replaced by that of a haptophyte endosymbiont during a tertiary endosymbiosis. The present results strongly support the hypothesis that the plastids of the peridinin- and the fucoxanthin derivative-containing dinoflagellates are of separate origin.  相似文献   

4.
5.
Dinoflagellates are fascinating protists that have attracted researchers from different fields. The free-living species are major primary producers and the cause of harmful algal blooms sometimes associated with red tides. Dinoflagellates lack histones and nucleosomes and present a unique genome and chromosome organization, being considered the only living knockouts of histones. Their plastids contain genes organized in unigenic minicircles. Basic cell structure, biochemistry and molecular phylogeny place the dinoflagellates firmly among the eukaryotes. They have G1-S-G2-M cell cycles, repetitive sequences, ribosomal genes in tandem, nuclear matrix, snRNAs, and eukaryotic cytoplasm, whereas their nuclear DNA is different, from base composition to chromosome organization. They have a high G + C content, highly methylated and rare bases such as 5-hydroxymethyluracil (HOMeU), no TATA boxes, and form distinct interphasic dinochromosomes with a liquid crystalline organization of DNA, stabilized by metal cations and structural RNA. Without histones and with a protein:DNA mass ratio (1:10) lower than prokaryotes, they need a different way of packing their huge amounts of DNA into a functional chromatin. In spite of the high interest in the dinoflagellate system in genetics, molecular and cellular biology, their analysis until now has been very restricted. We review here the main achievements in the characterization of the genome, nucleus and chromosomes in this diversified phylum. The recent discovery of a eukaryotic structural and functional differentiation in the dinochromosomes and of the organization of gene expression in them, demonstrate that in spite of the secondary loss of histones, that produce a lack of nucleosomal and supranucleosomal chromatin organization, they keep a functional nuclear organization closer to eukaryotes than to prokaryotes.  相似文献   

6.
Morris  R. L.  Silva  M.  & Rizzo  P. J. 《Journal of phycology》2003,39(S1):42-43
Typically, fluorescent microscopy of dinoflagellate nuclei is of poor resolution, due mainly to visual obstruction of the nuclei by plastids, pigment granules, and thecal plates. Moreover, the usual slide mounts using buffered glycerol are temporary, and fade after a week or so. We have developed a procedure to clear pigments from dinoflagellates, followed by fluorescent staining of the nuclei. The cells are then prepared as permanent mounts using an ultraviolet light-catalyzed resin to produce stained samples which may be kept for at least three years with little loss of fluorescence. This procedure can also be used to prepare plastic embedded dinoflagellate cells which can then be sectioned at 1–2 nm, fluorescent stained, and permanently mounted. Suitable nuclear stains are DAPI, Hoechst 33258, ethidium bromide and acridine orange. The dinoflagellate (dinokaryotic), and endosymbiont (eukaryotic) nuclei are clearly visualized, revealing individual chromosomes in the dinoflagellate nucleus, and a highly lobed morphology of the endosymbiont nucleus.  相似文献   

7.
The organisation of dinoflagellate chromosomes is exceptional among eukaryotes. Their genomes are the largest in the Eukarya domain, chromosomes lack histones and may exist in liquid crystalline state. Therefore, the study of the structural and functional properties of dinoflagellate chromosomes is of high interest. In this work, we have analysed the telomeres and telomerase in two Dinoflagellata species, Karenia papilionacea and Crypthecodinium cohnii. Active telomerase, synthesising exclusively Arabidopsis-type telomere sequences, was detected in cell extracts. The terminal position of TTTAGGG repeats was determined by in situ hybridisation and BAL31 digestion methods and provides evidence for the linear characteristic of dinoflagellate chromosomes. The length of telomeric tracts, 25–80 kb, is the largest among unicellular eukaryotic organisms to date. Both the presence of long arrays of perfect telomeric repeats at the ends of dinoflagellate chromosomes and the existence of active telomerase as the primary tool for their high-fidelity maintenance demonstrate the general importance of these structures throughout eukaryotes. We conclude that whilst chromosomes of dinoflagellates are unique in many aspects of their structure and composition, their telomere maintenance follows the most common scenario.  相似文献   

8.
The dinoflagellates contain diverse plastids of uncertain origin. To determine the origin of the peridinin‐ and fucoxanthin‐containing dinoflagellate plastid, we sequenced the plastid‐encoded psaA, psbA, and rbcL genes from various red and dinoflagellate algae. The psbA gene phylogeny, which was made from a dataset of 15 dinoflagellates, 22 rhodophytes, five cryptophytes, seven haptophytes, seven stramenopiles, two chlorophytes, and a glaucophyte as the outgroup, supports monophyly of the peridinin‐, and fucoxanthin‐containing dinoflagellates, as a sister group to the haptophytes. The monophyletic relationship with the haptophytes is recovered in the psbA + psaA phylogeny, with stronger support. The rubisco tree utilized the ‘Form I’ red algal type of rbcL and included fucoxanthin‐containing dinoflagellates. The dinoflagellate + haptophyte sister relationship is also recovered in this analysis. Peridinium foliaceum is shown to group with the diatoms in all the phylogenies. Based on our analyses of plastid sequences, we postulate that: (1) the plastid of peridinin‐, and fucoxanthin‐containing dinoflagellates originated from a common ancestor; (2) the ancestral dinoflagellate acquired its plastid from a haptophyte though a tertiary plastid replacement; (3) ‘Form II’ rubisco replaced the ancestral rbcL after the divergence of the peridinin‐, and fucoxanthin‐containing dinoflagellates; and (4) we confirm that the plastid of P. foliaceum originated from a Stramenopiles endosymbiont.  相似文献   

9.
Despite their evolutionary and ecological importance, dinoflagellate phylogeny remains poorly resolved. Here we explored the utility of mitochondrial cytochrome b (cob) in inferring a dinoflagellate tree and focused on resolving the relationship between fucoxanthin‐and peridinin‐containing taxa. Trees were inferred using cob and small subunit rDNA alone or in combination as concatenated data and including members of the six major dinoflagellate orders. Many regions of the cob DNA or protein and rDNA trees were congruent with support for the monophyly of Symbiodinium spp. Freudenthal and of the Prorocentrales and the early divergence of Crypthecodinium cohnii Seligo in Grasse. However, these markers provided differing support for the monophyly of Pfiesteria spp. Steidinger et Burkholder (only supported strongly by rDNA) and of the fucoxanthin dinoflagellates with Akashiwo sp. (Hirasaka) Hansen et Moestrup (Gymnodiniales, only supported strongly by the cob data). The approximately unbiased (AU) test was used to assess these results using 13‐and 11‐taxon (excluding apicomplexans) backbone maximum likelihood trees inferred from the combined cob+rDNA data. The AU test suggested that our data were insufficient to resolve the phylogenetic position of Symbiodinium spp. and that the ancestral position of C. cohnii might have resulted from long‐branch attraction to the apicomplexan outgroup. We found significant support, however, for the association of fucoxanthin dinoflagellates with Akashiwo sp. The monophyly and relatively derived position of the Gymnodiniales in our cob DNA and protein trees and in the cob+rDNA tree is consistent with the tertiary endosymbiotic origin of the plastid in fucoxanthin dinoflagellates.  相似文献   

10.
Recent reports show that numerous chloroplast-specific proteins of peridinin-containing dinoflagellates are encoded on minicircles-small plasmidlike molecules containing one or two polypeptide genes each. The genes for these polypeptides are chloroplast specific because their homologs from other photosynthetic eukaryotes are exclusively encoded in the chloroplast genome. Here, we report the isolation, sequencing, and subcellular localization of minicircles from the peridinin-containing dinoflagellate Ceratium horridum. The C. horridum minicircles are organized in the same manner as in other peridinin-containing dinoflagellates and encode the same kinds of plastid-specific proteins, as previous studies reported. However, intact plastids isolated from C. horridum do not contain minicircles, nor do they contain DNA that hybridizes to minicircle-specific probes. Rather, C. horridum minicircles are localized in the nucleus as shown by cell fractionation, Southern hybridization, and in situ hybridization with minicircle-specific probes. A high-molecular-weight DNA was detected in purified C. horridum plastids, but it is apparently not minicircular in organization, as hybridization with a cloned probe from the plastid-localized DNA suggests. The distinction between C. horridum and other peridinin-containing dinoflagellates at the level of their minicircle localization is paralleled by C. horridum thylakoid organization, which also differs from that of other peridinin-containing dinoflagellates, indicating that a hitherto underestimated diversity of minicircle DNA localization and thylakoid organization exists across various dinoflagellate groups.  相似文献   

11.
Gymnodimium breve Davis, an unarmored marine dinoflagellate has a cell covering (theca) composed of four membranes. The inner two membranes represent a vesicular layer and in tangential section, the theca appears composed of polygonal areas. Unusual threat ridges are located in the cingular region between the epi- and hypocone. This osmotically sensitive species is extremely vesiculate with dispersed areas of cytoplasm containing typical eukaryotic organelles as well as other organelles found only in dinoflagellates. The non-vesiculated cytoplasm is continuous in serial sections. The chloroplasts can contain either quasi-radial or parallel lamellae typically consisting of three thylakoids each. The pyrenoid is multiple-stalked and lacks a starch cap. The dinophycean pusule is simple and similar to those found in several unarmored marine species. The nucleus is typically dinophycean but the chromosomes appear to lack nonfibrillar material.  相似文献   

12.
Mixotrophy, used herein for the combination of phototrophy and phagotrophy, is widespread among dinoflagellates. It occurs among most, perhaps all, of the extant orders, including the Prorocentrales, Dinophysiales. Gymnodiniales, Noctilucales, Gonyaulacales, Peridiniales, Blastodiniales. Phytodiniales, and Dinamoebales. Many cases of mixotrophy among dinoflagellates are probably undocumented. Primarily photosynthetic dinoflagellates with their “own” plastids can often supplement their nutrition by preying on other cells. Some primarily phagotrophic species are photosynthetic due to the presence of kleptochloroplasts or algal endosymbionts. Some parasitic dinoflagellates have plastids and are probably mixotrophic. For most mixotrophic dinoflagellates, the relative importance of photosynthesis, uptake of dissolved inorganic nutrients, and feeding are unknown. However, it is apparent that mixotrophy has different functions in different physiological types of dinoflagellates. Data on the simultaneous regulation of photosynthesis, assimilation of dissolved inorganic and organic nutrients, and phagotophy by environmental parameters (irradiance. availablity of dissolved nutrients, availability of prey) and by life history events are needed in order to understand the diverse roles of mixotrophy in dinoflagellates.  相似文献   

13.
The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.  相似文献   

14.
Molecular data and the evolutionary history of dinoflagellates   总被引:10,自引:3,他引:7  
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed.  相似文献   

15.
Plastids are widespread in plant and algal lineages. They are also exploited by some nonphotosynthetic protists, including malarial parasites, to support their diverse modes of life. However, cryptic plastids may exist in other nonphotosynthetic protists, which could be important in studies on the diversity and evolution of plastids. The parasite Perkinsus marinus, which causes mass mortality in oyster farms, is a nonphotosynthetic protist that is phylogenetically related to plastid-bearing dinoflagellates and apicomplexans. In this study, we searched for P. marinus methylerythritol phosphate (MEP) pathway genes, responsible for de novo isoprenoid synthesis in plastids, and determined the full-length gene sequences for 6 of 7 of these genes. Phylogenetic analyses revealed that each P. marinus gene clusters with orthologs from plastid-bearing eukaryotes, which have MEP pathway genes with essentially the same mosaic pattern of evolutionary origin. A new analytical method called sliding-window iteration of TargetP was developed to examine the distribution of targeting preferences. This analysis revealed that the sequenced genes encode bipartite targeting peptides that are characteristic of proteins targeted to secondary plastids originating from endosymbiosis of eukaryotic algae. These results support our idea that Perkinsus is a cryptic algal group containing nonphotosynthetic secondary plastids. In fact, immunofluorescent microscopy indicated that 1 of the MEP pathway enzymes, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, was localized to small compartments near mitochondrion, which are possibly plastids. This tiny organelle seems to contain very low quantities of DNA or may even lack DNA entirely. The MEP pathway genes are a useful tool for investigating plastid evolution in both of the photosynthetic and nonphotosynthetic eukaryotes and led us to propose the hypothesis that ancestral "chromalveolates" harbored plastids before a secondary endosymbiotic event.  相似文献   

16.
Dinoflagellate chromosomes are permanently condensed and lack nucleosomes. These features suggest that dinoflagellate chromosomes must have an altered structural arrangement when compared to other eukaryotes and some modified DNA replication machinery to accommodate it. To investigate this possibility, proliferating cell nuclear antigen (PCNA), an essential component of the DNA replication machinery, was chosen for closer examination. A protein in the dinoflagellate Crypthecodinium cohnii Biecheler was found to react specifically with two monoclonal antibodies raised against PCNA. The observed band had a size of 55 kDa, which is far in excess of what has been described previously. Another dinoflagellate, Gymnodinium catenatum Bravo, also displayed a band of this size; however, a third species Amphidinium carterae Hulburt, had a band of lower molecular weight. The putative PCNA homolog in C. cohnii showed a nonconstitutive expression pattern. A time-course western blot using cells from a synchronized G1 population showed that protein levels peak during S phase of the cell cycle. Both C. cohnii and A. carterae displayed a strong nuclear localization as determined by immunofluorescence microscopy. The signal was present in a subpopulation of cells, supporting a cell-cycle-specific expression pattern. It is possible that the larger size of this protein in some dinoflagellates reflects the unusual cell cycle and DNA arrangement of this group.  相似文献   

17.
Summary The multicellular parasitic dinoflagellateHaplozoon axiothellae Siebert was studied with electron microscopy. The trophocyte (attachment cell) bears a suction apparatus with a movable protruding stylet that penetrates the epithelial cell of the host gut. The gonocytes are binucleate and divide frequently. Nuclear structure is similar to the mesokaryotic condition of other dinoflagellates although the chromosomes lack the helically coiled appearance of the DNA fibrils. During nuclear division the nucleus retains its envelope intact and cytoplasmic invaginations develop in which packets of parallel microtubules occur. The microtubules attach to the nuclear envelope opposite the site of chromosome attachment. The chromosomes remain condensed during interphase but the helically coiled DNA fibrils characteristic of the mesokaryotic condition are not evident.The theca which encloses all cells is composed of elements similar to those of typical free-living dinoflagellates, the outer cell membrane and flattened vesicles which contain either flat thin plates or larger spines. No subthecal microtubules are present. The theca grows inward following nuclear division and separates the daughter cells. Trichocysts, pusules, flagellar structures and chloroplasts are not present. The relationship ofHaplozoon to other free-living and parasitic dinoflagellates is discussed.  相似文献   

18.
It is generally accepted that plastids first arose by acquisition of photosynthetic prokaryotic endosymbionts by non-photosynthetic eukaryotic hosts. It is also accepted that photosynthetic eukaryotes were acquired on several occasions as endosymbionts by non-photosynthetic eukaryote hosts to form secondary plastids. In some lineages, secondary plastids were lost and new symbionts were acquired, to form tertiary plastids. Most recent work has been interpreted to indicate that primary plastids arose only once, referred to as a 'monophyletic' origin. We critically assess the evidence for this. We argue that the combination of Ockham's razor and poor taxon sampling will bias studies in favour of monophyly. We discuss possible concerns in phylogenetic reconstruction from sequence data. We argue that improved understanding of lineage-specific substitution processes is needed to assess the reliability of sequence-based trees. Improved understanding of the timing of the radiation of present-day cyanobacteria is also needed. We suggest that acquisition of plastids is better described as the result of a process rather than something occurring at a discrete time, and describe the 'shopping bag' model of plastid origin. We argue that dinoflagellates and other lineages provide evidence in support of this.  相似文献   

19.
The freshwater dinoflagellate Gloeodinium montanum Klebs (1912) was examined with transmission and scanning electron microscopy. Micrographs of ultrathin sections revealed a series of membrane layers rather than the usual dinoflagellate theca in vegetative cysts and in legates. Swarmers had distinct pellicles but appeared to be devoid of thecal plates and vesicles. The organization of cysts and swarmers appeared remarkably similar. All cell types had typical dinoflagellate nuclei with condensed chromosomes. Chloraplasts had girdle lamellae. One pyrenoid per cell was also present in chloroplasts of vegetative cysts. Starch grains and oil globules were distributed throughout the cytoplasm. Large accumulation bodies and polyvesicular vacuoles were found in aging cysts. Trichocysts and flagellar hairs were absent. Two types of intra-cellular prokaryotic organisms were discovered.  相似文献   

20.
The three anomalously pigmented dinoflagellates Gymnodinium galatheanum, Gyrodinium aureolum, and Gymnodinium breve have plastids possessing 19'-hexanoyloxy-fucoxanthin as the major carotenoid rather than peridinin, which is characteristic of the majority of the dinoflagellates. Analyses of SSU rDNA from the plastid and the nuclear genome of these dinoflagellate species indicate that they have acquired their plastids via endosymbiosis of a haptophyte. The dinoflagellate plastid sequences appear to have undergone rapid sequence evolution, and there is considerable divergence between the three species. However, distance, parsimony, and maximum-likelihood phylogenetic analyses of plastid SSU rRNA gene sequences place the three species within the haptophyte clade. Pavlova gyrans is the most basal branching haptophyte and is the outgroup to a clade comprising the dinoflagellate sequences and those of other haptophytes. The haptophytes themselves are thought to have plastids of a secondary origin; hence, these dinoflagellates appear to have tertiary plastids. Both molecular and morphological data divide the plastids into two groups, where G. aureolum and G. breve have similar plastid morphology and G. galatheanum has plastids with distinctive features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号