首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of heme peroxidase enzymes with their substrates have been studied for many years, but only in the last decade or so has structural information begun to appear. This review looks at crystal structures for a number of heme peroxidases in complex with a number of (mainly organic) substrates. It examines the nature and location of the binding interaction, and explores functional similarities and differences across the family.  相似文献   

2.
2-Methyl-1,2,3,4-tetrahydro-beta-carboline (2-Me-THbetaC) and 2,9-dimethyl-1,2,3,4-tetrahydro-beta-carboline (2,9-diMe-THbetaC) are naturally occurring analogs of the Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), whereas their corresponding aromatic 2-methyl-beta-carbolinium cations resemble 1-methyl-4-phenylpyridinium (MPP(+)) and are considered potential toxins involved in Parkinson's disease (PD). To become toxicants, 2-methyltetrahydro-beta-carbolines need to be oxidized (aromatized) by human metabolic enzymes to pyridinium-like (beta-carbolinium) cations as occur with MPTP/MPP(+) model. In contrast to MPTP, human MAO-A or -B were not able to oxidize 2-Me-THbetaC to pyridinium-like cations. Neither, cytochrome P-450 2D6 or a mixture of six P450 enzymes carried out this oxidation in a significant manner. However, 2-Me-THbetaC and 2,9-diMe-THbetaC were efficiently oxidized by horseradish peroxidase (HRP), lactoperoxidase (LPO), and myeloperoxidase (MPO) to 2-methyl-3,4-dihydro-beta-carbolinium cations (2-Me-DHbetaC(+), 2,9-diMe-DHbetaC(+)) as the main products, and detectable amount of 2-methyl-beta-carbolinium cations (2-Me-betaC(+), 2,9-diMe-betaC(+)). The apparent kinetic parameters (k(cat), k(4)) were similar for HRP and LPO and higher for MPO. Peroxidase inhibitors (hydroxylamine, sodium azide, and ascorbic acid) highly reduced or abolished this oxidation. Although MPTP was not oxidized by peroxidases; its intermediate metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium cation (MPDP(+)) was efficiently oxidized to MPP(+) by heme peroxidases. It is concluded that heme peroxidases could be key catalysts responsible for the aromatization (bioactivation) of endogenous and naturally occurring N-methyltetrahydro-beta-carbolines and related protoxins to toxic pyridinium-like cations resembling MPP(+), suggesting a role for these enzymes in toxicological and neurotoxicological processes.  相似文献   

3.
We previously reported that the hemes of horseradish peroxidase (HRP) and Arthromyces ramosus peroxidase (ARP) undergo vinyl and meso-carbon modifications when the enzymes oxidize chloride ion. Here we demonstrate for ARP that, although both modifications exhibit the same pH profile with an optimum at approximately pH 4.0, monochlorodimedone suppresses the vinyl but not meso-carbon modifications. Furthermore, meso-chlorination occurs when ARP reacts with exogenous HOCl, implicating an Fe(III)-O-Cl intermediate in the reaction. These results establish that (a) the chloro species involved in meso-modification differs from that which reacts with the vinyl groups, (b) equilibration of the vinyl modifying species (HOCl) into the medium occurs more rapidly than vinyl group modification, and (c) the oxidation of chloride by ARP produces two reactive species: HOCl, which adds to the heme vinyl but not meso-positions, and a distinct second species that adds to the meso-carbon.  相似文献   

4.
In heme peroxidases, a distal His residue plays an essential role in the initial two electron oxidation of resting state enzyme to compound I by hydrogen peroxide. A distal Arg residue assists in this process. The contributions of the charge, H-bonding capacity, size, and mobility of this Arg residue to Coprinus cinereus peroxidase (CIP) reactivity and stability have been examined by substituting Arg51 with Gln (retains H-bond donor at N epsilon position), Asn (small size, H-bond donor and acceptor), Leu (similar to Asn, but hydrophobic), and Lys (charge and H-bond donor, but at N zeta position). UV-visible spectroscopy was used to monitor pH-linked heme changes, compound I formation and reduction, fluoride binding, and thermostability. (1)H NMR spectroscopy enabled heme pocket differences in both resting and cyanide-ligated states of the enzymes to be evaluated and compared with wild-type CIP. We found that the H-bonding capacity of distal Arg is key to fast compound I formation and ligand binding to heme, whereas charge is important for lowering the pK(a) of distal His and for the binding and stabilisation of anionic ligands at heme iron. The properties of the distal Arg residue in CIP, cytochrome c peroxidase (CCP) and horseradish peroxidase (HRP) differ significantly in their pH induced transitions and dynamics.  相似文献   

5.
M. Mäder  C. Walter 《Planta》1986,169(2):273-277
De-novo synthesis of acid and basic peroxidases has been studied in cell suspension cultures of tobacco by incorporation of 3H- and 14C-amino acids. Incorporation rates were found to be high for acid peroxidases and low for basic peroxidases. Synthesis of all peroxidases was inhibited by cycloheximide and actinomycin D. Subculturing of the cells increased the rates of radioactive amino-acid incorporation into all peroxidases within the first 24 h. This rise in peroxidase synthesis was correlated with the age of the transferred cells. The older the cells were the more pronounced was the effect. During the culture cycle the high rates of peroxidase synthesis at the second day dropped back to initial values. Peroxidase synthesis was thus inversely related to peroxidase accumulation which was very low at the beginning and increased continuously. By pulse-chase experiments it has been shown that newly synthesized acid peroxidases accumulated in the medium. This process was inhibited by monensin. Only the acid peroxidases were secreted into the cell wall and from there released. The basic peroxidases were not detectable in the medium.Abbreviations AA* radioactive amino-acid mixture - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

6.
Bax/Bak activation and cardiolipin peroxidation are essential for cytochrome c release during apoptosis, yet, the link between them remains elusive. We report that sequence of events after exposure of mouse embryonic fibroblast (MEF) cells to actinomycin D followed the order: Bax translocation → superoxide production → cardiolipin peroxidation. Genetic ablation of Bax/Bak inhibited actinomycin D induced superoxide production and cardiolipin peroxidation. Rotenone caused robust superoxide generation but did not trigger cardiolipin peroxidation in Bax/Bak double knockout MEF cells. This suggests that, in addition to participating in ROS generation, Bax/Bak play another specific role in cardiolipin oxidation. In isolated mitochondria, recombinant Bax enhanced succinate induced cardiolipin oxidation and cytochrome c release. Mitochondrial peroxidase activity, likely involved in cardiolipin peroxidation, was enhanced upon incubation with recombinant Bax. Thus, cardiolipin peroxidation may be causatively and time-dependently related to Bax/Bak effects on ROS generation and peroxidase activation of cytochrome c.  相似文献   

7.
Benfang Lei's laboratory conducts research on pathogenesis of human pathogen Group A Streptococcus (GAS) and horse pathogen Streptococcus equi (S. equi). His current research focuses on heme acquisition in Gram-positive pathogens and molecular mechanism of GAS and S. equi pathogenesis. Heme is an important source of essential iron for bacterial pathogens. Benfang Lei and colleagues identified the first cell surface heme-binding protein in Gram-positive pathogens and the heme acquisition system in GAS, demonstrated direct heme transfer from one protein to another, demonstrated an experimental pathway of heme acquisition by the Staphylococcus aureus Isd system, elucidated the activated heme transfer mechanism, and obtained evidence for a chemical mechanism of direct axial ligand displacement during the Shp-to-HtsA heme transfer reaction. These findings have considerably contributed to the progress that has been made over recent years in understanding the heme acquisition process in Gram-positive pathogens. Pathogenesis of GAS is mediated by an abundance of extracellular proteins, and pathogenic role and functional mechanism are not known for many of these virulence factors. Lei laboratory identified a secreted protein of GAS as a CovRS-regulated virulence factor that is a protective antigen and is critical for GAS spreading in the skin and systemic dissemination. These studies may lead to development of novel strategies to prevent and treat GAS infections.  相似文献   

8.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H2O2 with concurrent evolution of O2. This pseudocatalatic degradation of H2O2 to O2 is solely dependent on ascorbate and is blocked by a spin trap, α-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H2O with subsequent regeneration of ascorbate by the reduction of MDA with H2O2 evolving O2 through the intermediate formation of O2. Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN. Further kinetic studies indicate that SCN itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H2O2 to O2. Binding studies by optical difference spectroscopy indicate that SCN binds LmAPX (Kd = 100 ± 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.  相似文献   

9.
Architecture of hemoprotein is solely responsible for different nature of heme coordination. Here we report that substitution of the acidic surface residue Glu226 to Ala in ascorbate peroxidase from Leishmania major alters the 5 coordinate high spin (5cHS) to a 6 coordinate low spin (6cLS) form at pH 7.5. Using UV-visible spectrophotometry, we show that the sixth ligand of heme in Glu226Ala at pH 7.5 is hydroxo. When the pH is decreased to 5.5, a new species of Glu226Ala appeared that had a spectrum characteristic of a 6cHS derivative. Stopped flow spectrophotometric techniques revealed that characteristics of Compound I was not seen in the Glu226Ala in presence of H2O2. Similarly guaiacol, ascorbate and ferrocytochrome c oxidation rate was 103 orders less for the Glu226Ala mutants compared to the wild type. These data suggested that surface acidic residue Glu226 might play role in proper maintenance of active site conformation.  相似文献   

10.
During host cell infection, Trypanosoma cruzi parasites are exposed to reactive oxygen and nitrogen species. As part of their antioxidant defense systems, they express two tryparedoxin peroxidases (TXNPx), thiol-dependent peroxidases members of the peroxiredoxin family. In this work, we report a kinetic characterization of cytosolic (c-TXNPx) and mitochondrial (m-TXNPx) tryparedoxin peroxidases from T. cruzi. Both c-TXNPx and m-TXNPx rapidly reduced hydrogen peroxide (k = 3.0 × 107 and 6 × 106 M−1 s−1 at pH 7.4 and 25 °C, respectively) and peroxynitrite (k = 1.0 × 106 and k = 1.8 × 107 M−1 s−1 at pH 7.4 and 25 °C, respectively). The reductive part of the catalytic cycle was also studied, and the rate constant for the reduction of c-TXNPx by tryparedoxin I was 1.3 × 106 M−1 s−1. The catalytic role of two conserved cysteine residues in both TXNPxs was confirmed with the identification of Cys52 and Cys173 (in c-TXNPX) and Cys81 and Cys204 (in m-TXNPx) as the peroxidatic and resolving cysteines, respectively. Our results indicate that mitochondrial and cytosolic TXNPxs from T. cruzi are highly efficient peroxidases that reduce hydrogen peroxide and peroxynitrite, and contribute to the understanding of their role as virulence factors reported in vivo.  相似文献   

11.
tert-Butyl 1-methyl-2-propynyl ether (tBMP) was analyzed for its ability to act as a mechanism-based inactivator of p450 2B4. tBMP inactivated p450 2B4 in a time-, concentration-, and NADPH-dependent manner. Losses in activity occurred with concurrent losses in the reduced CO spectrum and native p450 heme; however, there was a greater loss in activity than could be accounted for by reduced CO spectra or native heme loss. LC/MS analysis demonstrated that the losses in native heme were accompanied by the appearance of two modified hemes with m/z values of 705Da, consistent with tBMP adducted hemes. Both adducts had identical fragmentation patterns when analyzed by LC/MS/MS. The spectra were consistent with a tBMP molecule and an oxygen atom attached to iron-depleted heme. Proton NMR studies suggest that the two modified hemes in p450 2B1 are N-alkylated on pyrrole rings A and D.  相似文献   

12.
Oxidation of Amplex red (AR) by H(2)O(2) in the presence of horseradish peroxidase (HRP) gives rise to an intensely colored product, resorufin. This reaction has been frequently employed for measurements of low concentrations of H(2)O(2) in biological samples. In the current study, we show that alternative peroxidase substrates, such as p-hydroquinone, acetaminophen, anticancer mitoxantrone, and ametantrone, inhibit AR oxidation by consuming H(2)O(2) in a competitive process. In contrast, the anthracycline agents doxorubicin, daunorubicin, and 5-iminodaunorubicin are markedly less efficient as competitors in these reactions, as is salicylic acid. When [H(2)O(2)]>[AR], the generated resorufin was oxidized by HRP and H(2)O(2). In the presence of anthracyclines, this process was inhibited and occurred with a lag time, the duration of which depended on the concentration of anthracycline. We propose that the mechanism of this inhibition is due to the antioxidant activity of anthracyclines involving the reduction of the resorufin-derived phenoxyl radical by the drugs' hydroquinone moiety back to resorufin. In addition to HRP, lactoperoxidase, myeloperoxidase, and HL-60 cells, naturally rich in myeloperoxidase, also supported these reactions. Results of this study suggest that extra caution is needed when using AR to measure cellular H(2)O(2) in the presence of alternative peroxidase substrates. They also demonstrate that the anticancer anthracyclines may function as antioxidants.  相似文献   

13.
A tobacco peroxidase isoenzyme (TP60) was down-regulated in tobacco using an antisense strategy, this affording transformants with lignin reductions of up to 40-50% of wild type (control) plants. Significantly, both guaiacyl and syringyl levels decreased in essentially a linear manner with the reductions in lignin amounts, as determined by both thioacidolysis and nitrobenzene oxidative analyses. These data provisionally suggest that a feedback mechanism is operative in lignifying cells, which prevents build-up of monolignols should oxidative capacity for their subsequent metabolism be reduced. Prior to this study, the only known rate-limiting processes in the monolignol/lignin pathways involved that of Phe supply and the relative activities of cinnamate-4-hydroxylase/p-coumarate-3-hydroxylase, respectively. These transformants thus provide an additional experimental means in which to further dissect and delineate the factors involved in monolignol targeting to precise regions in the cell wall, and of subsequent lignin assembly. Interestingly, the lignin down-regulated tobacco phenotypes displayed no readily observable differences in overall growth and development profiles, although the vascular apparatus was modified.  相似文献   

14.
15.
The goal of the experiments described here was to explore the possible role of fixed charges in determining the conduction properties of CFTR. We focused on transmembrane segment 6 (TM6) which contains four basic residues (R334, K335, R347, and R352) that would be predicted, on the basis of their positions in the primary structure, to span TM6 from near the extracellular (R334, K335) to near the intracellular (R347, R352) end. Cysteines substituted at positions 334 and 335 were readily accessible to thiol reagents, whereas those at positions 347 and 352 were either not accessible or lacked significant functional consequences when modified. The charge at positions 334 and 335 was an important determinant of CFTR channel function. Charge changes at position 334--brought about by covalent modification of engineered cysteine residues, pH titration of cysteine and histidine residues, and amino acid substitution--produced similar effects on macroscopic conductance and the shape of the I-V plot. The effect of charge changes at position 334 on conduction properties could be described by electrodiffusion or rate-theory models in which the charge on this residue lies in an external vestibule of the pore where it functions to increase the concentration of Cl adjacent to the rate-limiting portion of the conduction path. Covalent modification of R334C CFTR increased single-channel conductance determined in detached patches, but did not alter open probability. The results are consistent with the hypothesis that in wild-type CFTR, R334 occupies a position where its charge can influence the distribution of anions near the mouth of the pore.  相似文献   

16.
Staphylococcus aureus is an opportunistic pathogen whose infectious capacity depends on surface proteins, which enable bacteria to colonize and invade host tissues and cells. We analyzed “trypsin-shaved” surface proteins of S. aureus cultures by high resolution LC-MS/MS at different growth stages and culture conditions. Some modified peptides were identified, with a mass shift corresponding to the addition of a CH2O group (+ 30.0106 u). We present evidence that this shift corresponds to a hyxdroxymethylation of asparagine and glutamine residues. This known but poorly documented post-translational modification was only found in a few proteins of S. aureus grown under specific conditions. This specificity seemed to exclude the hypothesis of an artifact due to sample preparation. Altogether hydroxymethylation was observed in 35 peptides from 15 proteins in our dataset, which corresponded to 41 modified sites, 35 of them being univocally localized. While no function can currently be assigned to this post-translational modification, we hypothesize that it could be linked to modulation of virulence factors, since it was mostly found on some surface proteins of S. aureus.  相似文献   

17.

Background and Aims

Peroxidase isoenzymes play diverse roles in plant physiology, such as lignification and defence against pathogens. The actions and regulation of many peroxidases are not known with much accuracy. A number of studies have reported direct involvement of peroxidase isoenzymes in the oxidation of monolignols, which constitutes the last step in the lignin biosynthesis pathway. However, most of the available data concern only peroxidases and lignins from angiosperms. This study describes the molecular cloning of two novel peroxidases from the ‘living fossil’ Ginkgo biloba and their regulation by salt stress and salicylic acid.

Methods

Suspension cell cultures were used to purify peroxidases and to obtain the cDNAs. Treatments with salicylic acid and sodium chloride were performed and peroxidase activity and gene expression were monitored.

Key Results

A novel peroxidase was purified, which preferentially used p-hydroxycinnamyl alcohols as substrates and was able to form dehydrogenation polymers in vitro from coniferyl and sinapyl alcohols. Two peroxidase full-length cDNAs, GbPrx09 and GbPrx10, were cloned. Both peroxidases showed high similarity to other basic peroxidases with a putative role in cell wall lignification. Both GbPrx09 and GbPrx10 were expressed in leaves and stems of the plant. Sodium chloride enhanced the gene expression of GbPrx09 but repressed GbPrx10, whereas salicylic acid strongly repressed both GbPrx09 and GbPrx10.

Conclusions

Taken together, the data suggest the participation of GbPrx09 and GbPrx10 in the developmental lignification programme of the cell wall. Both peroxidases possess the structural characteristics necessary for sinapyl alcohol oxidation. Moreover, GbPrx09 is also involved in lignification induced by salt stress, while salicylic acid-mediated lignification is not a result of GbPrx09 and GbPrx10 enzymatic activity.  相似文献   

18.
19.
Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M−1 s−1 and 0.34 ± 0.15 s−1, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min−1 at pH 6.0.  相似文献   

20.
Peroxidases are key player in the detoxification of reactive oxygen species during cellular metabolism and oxidative stress. Membrane-bound isoenzymes have been described for peroxidase superfamilies in plants and animals. Recent studies demonstrated a location of peroxidases of the secretory pathway (class III peroxidases) at the tonoplast and the plasma membrane. Proteomic approaches using highly enriched plasma membrane preparations suggest organisation of these peroxidases in microdomains, a developmentally regulation and an induction of isoenzymes by oxidative stress. Phylogenetic relations, topology, putative structures, and physiological function of membrane-bound class III peroxidases will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号