首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A general method for improving of the sensitivity of the TROSY-type triple resonance experiments in the presence of conformational exchange-induced (CSX) relaxation is proposed based on the use of CPMG-INEPT (Müller et al., J. Am. Chem. Soc., 1995, 117, 11043–11048) during the N–C polarization transfer periods. Significantly improved sensitivity is demonstrated for the majority of cross-peaks in the new [15N,1H]-TROSY-XY-HNCA experiment, measured with partially folded RNase AS-Protein, with negligible loss of sensitivity for resonances unaffected by CSX relaxation. In addition, a comparison of cross-peak amplitudes in [15N,1N]-TROSY-XY-HNCA and conventional [15N,1H]-TROSY-HNCA spectra provides a quick and sensitive estimation of the CSX relaxation contribution.  相似文献   

2.
A new method for backbone resonance assignment suitable for large proteins with the natural 1H isotope content is proposed based on a combination of the most sensitive TROSY-type triple-resonance experiments. These techniques include TROSY-HNCO, 13C-detected 3D multiple-quantum HACACO and the newly developed 3D TROSY multiple-quantum-HN(CA)HA and 4D TROSY multiple-quantum-HACANH experiments. The favorable relaxation properties of the multiple-quantum coherences, signal detection using the 13C antiphase coherences, and the use of TROSY optimize the performance of the proposed set of experiments for application to large protonated proteins. The method is demonstrated with the 44 kDa uniformly 15N,13C-labeled and fractionally (35%) deuterated trimeric B. Subtilis Chorismate Mutase and is suitable for proteins with large correlation times but a relatively small number of residues, such as membrane proteins embedded in micelles or oligomeric proteins.  相似文献   

3.
The interference between conformational exchange-induced time-dependent variations of chemical shifts in a pair of scalar coupled 1H and 15N spins is used to construct novel TROSY-type NMR experiments to suppress NMR signal loss in [15N,1H]-correlation spectra of a 14-mer DNA duplex free in solution and complexed with the Antp homeodomain. An analysis of double- and zero-quantum relaxation rates of base 1H–15N moieties showed that for certain residues the contribution of conformational exchange-induced transverse relaxation might represent a dominant relaxation mechanism, which, in turn, can be effectively suppressed by TROSY. The use of the new TROSY method for exchange-induced transverse relaxation optimization is illustrated with two new experiments, 2D h1 J HN,h2 J NN-quantitative [15N,1H]-TROSY to measure h1 J HN and h2 J NN scalar coupling constants across hydrogen bonds in nucleic acids, and 2D (h2 J NN+h1 J NH)-correlation-[15N,1H]-TROSY to correlate 1HN chemical shifts of bases with the chemical shifts of the tertiary 15N spins across hydrogen bonds using the sum of the trans-hydrogen bond coupling constants in nucleic acids.  相似文献   

4.
Triple resonance HCN and HCNCH experiments are reliable methods of establishing sugar-to-base connectivity in the NMR spectra of isotopicaly labeled oligonucleotides. However, with larger molecules the sensitivity of the experiments is drastically reduced due to relaxation processes. Since the polarization transfer between 13C and 15N nuclei relies on rather small heteronuclear coupling constants (11–12 Hz), the long evolution periods (up to 30–40 ms) in the pulse sequences cannot be avoided. Therefore any effort to enhance sensitivity has to concentrate on manipulating the spin system in such a way that the spin–spin relaxation rates would be minimized. In the present paper we analyze the efficiency of the two known approaches of relaxation rate control, namely the use of multiple-quantum coherence (MQ) and of the relaxation interference between chemical shift anisotropy and dipolar relaxation – TROSY. Both theoretical calculations and experimental results suggest that for the sugar moiety (H1-C1-N1/9) the MQ approach is clearly preferable. For the base moiety (H6/8-C6/8-N1/9), however, the TROSY shows results superior to the MQ suppression of the dipole–dipole relaxation at moderate magnetic fields (500 MHz) and the sensitivity improvement becomes dramatically more pronounced at very high fields (800 MHz). The pulse schemes of the triple-resonance HCN experiments with sensitivity optimized performance for unambiguous assignments of intra-residual sugar-to-base connectivities combining both approaches are presented.  相似文献   

5.
A simple modification of the TROSY pulse transfer scheme, suggested by Yang and Kay [J. Biomol. NMR 13 (1999) 3–10], is proposed which results in the suppression of unwanted anti-TROSY lines without any extra loss in sensitivity. The higher sensitivity of this TROSY transfer scheme therefore becomes available for 2D [15N, 1H] TROSY correlation and 3D/4D 15N separated NOESY type experiments where complete suppression of the broad anti-TROSY lines is essential.  相似文献   

6.
Extensive spectral overlap presents a major problem for the NMR study of large RNAs. Here we present NMR techniques for resolution enhancement and spectral simplification of fully 13C labelled RNA. High-resolution 1H-13C correlation spectra are obtained by combining TROSY-type experiments with multiple-band-selective homonuclear 13C decoupling. An additional C-C filter sequence performs base-type-selective spectral editing. Signal loss during the filter is significantly reduced because of TROSY-type spin evolution. These tools can be inserted in any 13C-edited multidimensional NMR experiment. As an example we have chosen the 13C-edited NOESY which is a crucial experiment for sequential resonance assignment of RNA. Application to a 33-nucleotide RNA aptamer and a 76-nucleotide tRNA illustrates the potential of this new methodology.  相似文献   

7.
A new strategy for the simultaneous NMR assignment of both backbone and side chain amides in large proteins with isotopomer-selective transverse-relaxation-optimized spectroscopy (IS-TROSY) is reported. The method considers aspects of both the NMR sample preparation and the experimental design. First, the protein is dissolved in a buffer with 50%H2O/50%D2O in order to promote the population of semideuterated NHD isotopomers in side chain amides of Asn/Gln residues. Second, a 13C′-coupled 2D 15N–1H IS-TROSY spectrum provides a stereospecific distinction between the geminal protons in the E and Z configurations of the carboxyamide group. Third, a suite of IS-TROSY-based triple-resonance NMR experiments, e.g. 3D IS-TROSY-HNCA and 3D IS-TROSY-HNCACB, are designed to correlate aliphatic carbon atoms with backbone amides and, for Asn/Gln residues, at the same time with side chain amides. The NMR assignment procedure is similar to that for small proteins using conventional 3D HNCA/3D HNCACB spectra, in which, however, signals from NH2 groups are often very weak or even missing due to the use of broad-band proton decoupling schemes and NOE data have to be used as a remedy. For large proteins, the use of conventional TROSY experiments makes resonances of side chain amides not observable at all. The application of IS-TROSY experiments to the 35-kDa yeast cytosine deaminase has established a complete resonance assignment for the backbone and stereospecific assignment for side chain amides, which otherwise could not be achieved with existing NMR experiments. Thus, the development of IS-TROSY-based method provides new opportunities for the NMR study of important structural and biological roles of carboxyamides and side chain moieties of arginine and lysine residues in large proteins as well as amino moieties in nucleic acids.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

8.
Aromatic amino-acid side chains are essential components for the structure and function of proteins. We present herein a set of NMR experiments for time-efficient resonance assignment of histidine and tyrosine side chains in uniformly 13C/15N-labeled proteins. The use of band-selective 13C pulses allows to deal with linear chains of coupled spins, thus avoiding signal loss that occurs in branched spin systems during coherence transfer. Furthermore, our pulse schemes make use of longitudinal 1H relaxation enhancement, Ernst-angle excitation, and simultaneous detection of 1H and 13C steady-state polarization to achieve significant signal enhancements.  相似文献   

9.
The assignment of the aliphatic 13C resonances of trimeric Bacillus Subtilis chorismate mutase, a protein with a molecular mass of 44 kDa, consisting of three 127-residue monomers is presented by use of two-dimensional (2D) 13C-start and 13C-observe NMR experiments. These experiments start with 13C excitation and end with 13C observation while relying on the long transverse relaxation times of 13C spins in uniformly deuterated and 13C,15N-labeled large proteins. Gains in sensitivity are achieved by the use of a paramagnetic relaxation enhancement agent to reduce 13C T 1 relaxation times with little effect on 13C T 2 relaxation times. Such 2D 13C-only NMR experiments circumvent problems associated with the application of conventional experiments for side-chain assignment to proteins of larger sizes, for instance, the absence or low concentration of the side-chain 1H spins, the transfer of the side-chain spin polarization to the 1HN spins for signal acquisition, or the necessity of a quantitative reprotonation of the methyl moieties in the otherwise fully deuterated side-chains. We demonstrate that having obtained a nearly complete assignment of the side-chain aliphatic 13C resonances, the side-chain 1H chemical shifts can be assigned in a semiautomatic fashion using 3D 15N-resolved and 13C-resolved NOESY experiments measured with a randomly partially protonated protein sample. We also discuss perspectives for structure determination of larger proteins by using novel strategies which are based on the 1H,1H NOEs in combination with multiple residual dipolar couplings between adjacent 13C spins determined with 2D 13C-only experiments.  相似文献   

10.
Homonuclear 1H residual dipolar couplings (RDCs) truncate the evolution of transverse 1H magnetization of weakly aligned molecules in high-resolution NMR experiments. This leads to losses in sensitivity or resolution in experiments that require extended 1H evolution times. Lee–Goldburg decoupling schemes have been shown to remove the effects of homonuclear dipolar couplings, while preserving chemical shift evolution in a number of solid-state NMR applications. Here, it is shown that the Lee-Goldburg sequence can be effectively incorporated into INEPT- or HMQC-type transfer schemes in liquid state weak alignment experiments in order to increase the efficiency of the magnetization transfer. The method is applied to the sensitive detection of 1HN13C long-range RDCs in a three-dimensional HCN experiment. As compared to a conventional HCN experiment, an average sensitivity increase by a factor of 2.4 is obtained for a sample of weakly aligned protein G. This makes it possible to detect 170 long-range 1HN13C RDCs for distances up to 4.9 Å  相似文献   

11.
Triple resonance HCN and HCNCH experiments used in studies of 13C/15N labeled oligonucleotides include extended evolution periods (typically up to 100 ms) to allow coherence transfer through a complex heteronuclear spin network. Unfortunately, most of the magnetization is lost during the evolution due to fast spin–spin relaxation dominated by one-bond 1H–13C dipolar interaction. As demonstrated recently, the sensitivity of the experiments can be dramatically improved by keeping the spin system in a state of proton–carbon multiple-quantum coherence, which is not affected by the strong dipolar coupling. However, the multiple-quantum coherence is very sensitive to homonuclear as well as long-range heteronuclear interactions. Unwanted magnetization transfer due to these interactions can reduce the sensitivity back to the level of a single-quantum experiment and, for some spin moieties, even eliminate the signal completely. In the present paper we show that a modified HCN scheme that refocuses the interfering coherences improves sensitivity routinely by a factor of 1.5 to 4 over a nonselective experiment. In addition, novel multiple-quantum 2D and 3D HCNCH experiments with substantially enhanced sensitivity are presented.  相似文献   

12.
We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs.  相似文献   

13.
Direct detection of 13C can be advantageous when studying uniformly enriched proteins, in particular for paramagnetic proteins or when hydrogen exchange with solvent is fast. A scheme recently introduced for long-observation-window band-selective homonuclear decoupling in solid state NMR, LOW-BASHD (Struppe et al. in J Magn Reson 236:89–94, 2013) is shown to be effective for 13Cα decoupling during direct 13C′ observation in solution NMR experiments too. For this purpose, adjustment of the decoupling pulse parameters and delays is demonstrated to be important for increasing spectral resolution, to reduce three-spin effects, and to decrease the intensity of decoupling side-bands. LOW-BASHD then yields 13C′ line widths comparable to those obtained with the popular IPAP method, while enhancing sensitivity by ca 35 %. As a practical application of LOW-BASHD decoupling, requiring quantitative intensity measurement over a wide dynamic range, the impact of lipid binding on the 13C′-detected NCO spectrum of the intrinsically disordered protein α-synuclein is compared with that on the 1H-detected 1H–15N HSQC spectrum. Results confirm that synuclein’s “dark state” behavior is not caused by paramagnetic relaxation or rapid hydrogen exchange.  相似文献   

14.
The limits of resolution that can be obtained in 1H–15N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee–Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1H resonances. Heteronuclear decoupling of 15N from the 1H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2H and 15N enriched protein where the amides have been exchanged in normal water, MAS at 20 kHz, and WALTZ-16 decoupling of the 15N nuclei. The combination of these techniques results in average 1H lines of only 0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15N decoupling are described for achieving the best possible performance in these experiments.  相似文献   

15.
A new NMR spin relaxation experiment is described for measuring chemical exchange time constants from approximately 0.5 ms to 5 ms in 15N-labeled macromolecules. The pulse sequence is based on the Carr–Purcell–Meiboom–Gill technique [Carr and Purcell (1954) Phys. Rev., 94, 630–638; Meiboom and Gill (1958) Rev. Sci. Instrum., 29, 688–691; Loria et al. (1999) J. Am. Chem. Soc., 121, 2331–2332], but implements TROSY selection [Pervushin et al. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371] to permit measurement of exchange linebroadening contributions to the narrower component of the 1H-15N scalar-coupled doublet. This modification extends the size limitation imposed on relaxation measurements due to the fast decay of transverse magnetization in larger macromolecules. The new TROSY-CPMG experiment is demonstrated on a [U-98% 15 N] labeled sample of basic pancreatic trypsin inhibitor and a [U-83% 2H, U-98% 15 N] labeled sample of triosephosphate isomerase, a 54 kDa homodimeric protein.  相似文献   

16.
Recently, 15N-detected multidimensional NMR experiments have been introduced for the investigation of proteins. Utilization of the slow transverse relaxation of nitrogen nuclei in a 15N-TROSY experiment allowed recording of high quality spectra for high molecular weight proteins, even in the absence of deuteration. Here, we demonstrate the applicability of three 15N-detected H–N correlation experiments (TROSY, BEST-TROSY and HSQC) to RNA. With the newly established 15N-detected BEST-TROSY experiment, which proves to be the most sensitive 15N-detected H–N correlation experiment, spectra for five RNA molecules ranging in size from 5 to 100 kDa were recorded. These spectra yielded high resolution in the 15N-dimension even for larger RNAs since the increase in line width with molecular weight is more pronounced in the 1H- than in the 15N-dimension. Further, we could experimentally validate the difference in relaxation behavior of imino groups in AU and GC base pairs. Additionally, we showed that 15N-detected experiments theoretically should benefit from sensitivity and resolution advantages at higher static fields but that the latter is obscured by exchange dynamics within the RNAs.  相似文献   

17.
In experiments with proteins of molecular weights around 100 kDa the implementation of [15N,1H]-TROSY-elements in [15N]-constant-time triple resonance experiments yields sensitivity enhancements of one to two orders of magnitude. An additional gain of 10 to 20% may be obtained with the use of sensitivity enhancement elements. This paper describes a novel sensitivity enhancement scheme which is based on concatenation of the 13 C 15N magnetization transfer with the ST2-PT element, and which enables proper TROSY selection of the 15N multiplet components.  相似文献   

18.
In this paper, we demonstrate that the sensitivity of triple-resonance NMR experiments can be enhanced significantly through quenching scalar coupling mediated relaxation by using composite-pulse decoupling (CPD) or an adiabatic decoupling sequence on aliphatic, in particular alpha-carbons in 13C/15N-labeled proteins. The CPD-HNCO experiment renders 50% sensitivity enhancement over the conventional CT-HNCO experiment performed on a 12 kDa FK506 binding protein, when a total of 266 ms of amide nitrogen–carbonyl carbon defocusing and refocusing periods is employed. This is a typical time period for the direct detection of hydrogen bonds in proteins via trans-hydrogen bond 3h J NC couplings. The experimental data fit theoretical analysis well. The significant enhancement in sensitivity makes the experiment more applicable to larger-sized proteins without resorting to perdeuteration.  相似文献   

19.
TROSY-based triple resonance experiments are essential for protein backbone assignment of large biomolecular systems by solution NMR spectroscopy. In a survey of the current Bruker pulse sequence library for TROSY-based experiments we found that several sequences were plagued by artifacts that affect spectral quality and hamper data analysis. Specifically, these experiments produce sidebands in the 13C(t 1) dimension with inverted phase corresponding to 1HN resonance frequencies, with approximately 5% intensity of the parent 13C crosspeaks. These artifacts originate from the modulation of the 1HN frequency onto the resonance frequency of 13Cα and/or 13Cβ and are due to 180° pulses imperfections used for 1H decoupling during the 13C(t 1) evolution period. These sidebands can become severe for CAi, CAi?1 and/or CBi, CBi?1 correlation experiments such as TROSY-HNCACB. Here, we implement three alternative decoupling strategies that suppress these artifacts and, depending on the scheme employed, boost the sensitivity up to 14% on Bruker spectrometers. A class of comparable Agilent/Varian pulse sequences that use WALTZ16 1H decoupling can also be improved by this method resulting in up to 60–80% increase in sensitivity.  相似文献   

20.
Three transverse relaxation optimised NMR experiments (TROSY) for the measurement of scalar and dipolar couplings suitable for proteins dissolved in aqueous iso- and anisotropic solutions are described. The triple-spin-state-selective experiments yield couplings between 1HN-13C, 15N-13C, 1HN-13C i–1, 15N-13C i–1, 1HN-13Ci–1, 15N-13Ci–1, and 13Ci–1-13C i–1 without introducing nonessential spectral crowding compared with an ordinary two-dimensional 15N-1H correlation spectrum and without requiring explicit knowledge of carbon assignments. This set of /-J-TROSY experiments is most useful for perdeuterated proteins in studies of structure–activity relationships by NMR to observe, in addition to epitopes for ligands, also conformational changes induced by binding of ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号