首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the central nervous system, the formation of the myelin sheath and the differentiation of the myelinating cells, namely oligodendrocytes, are regulated by complex signaling networks that involve purinergic receptors and the extracellular matrix. However, the exact nature of the molecular interactions underlying these networks still needs to be defined. In this respect, the data presented here reveal a signaling mechanism that is characterized by an interaction between the purinergic P2Y(12) receptor and the matricellular extracellular matrix protein autotaxin (ATX), also known as ENPP2, phosphodiesterase-Iα/ATX, or lysoPLD. ATX has been previously described by us to mediate intermediate states of oligodendrocyte adhesion and to enable changes in oligodendrocyte morphology that are thought to be crucial for the formation of a fully functional myelin sheath. This functional property of ATX is mediated by ATX's modulator of oligodendrocyte remodeling and focal adhesion organization (MORFO) domain. Here, we show that the expression of the P2Y(12) receptor is necessary for ATX's MORFO domain to exert its effects on differentiating oligodendrocytes. In addition, our data demonstrate that exogenous expression of the P2Y(12) receptor can render cells responsive to the known effects of ATX's MORFO domain, and they identify Rac1 as an intracellular factor mediating the effect of ATX-MORFO-P2Y(12) signaling on the assembly of focal adhesions. Our data further support the idea that a physical interaction between ATX and the P2Y(12) receptor provides the basis for an ATX-MORFO-P2Y(12) signaling axis that is crucial for mediating cellular states of intermediate adhesion and morphological/structural plasticity.  相似文献   

2.
Li ZW  Zhao YR  Zhao C  Fu R  Li ZY 《生理学报》2011,63(6):601-610
自分泌运动因子(autotaxin,ATX)也称作磷酸二酯酶Iα,是核苷酸焦磷酸酶/磷酸二酯酶家族(nucleotide pyrophosphatases,NPPs)中的一员,因而也称作NPP2.ATX是NPPs中唯一具有溶血磷脂酶D(lysophospholipase D,lysoPLD)活性的成员,它可以将溶血磷脂...  相似文献   

3.
NPP2, also known as phosphodiesterase‐I alpha/autotaxin, is a type‐II membrane protein that belongs to the nucleotide pyrophosphatase/phosphodiesterase family (NPP). We have recently demonstrated that NPP2 is expressed and released by differentiating oligodendrocytes during the critical stages of CNS myelination. The structural domains of this secreted macromolecule suggest a functional role in the regulation of oligodendrocyte adhesion. Here, we present data that demonstrates that NPP2 interferes with the ability of oligodendroglial cells to adhere to known CNS adhesion molecules present during the onset of myelination, such as fibronection, vitronectin, and merosin (laminin2). Responses to NPP2 appear to be regulated by a different mechanism depending on the developmental stage of the oligodendrocyte. Although the exact mechanisms for NPP2 mediated counter‐adhesion are unknown, our studies have implicated that an active signalling mechanism involving heterotrimeric G proteins is responsible for adhesion modulation. These studies clearly define a role of NPP2 as a matricellular protein modulating oligodendrocyte adhesion and suggest that NPP2 function may represent the first step of oligodendrocyte remodelling when differentiating oligodendrocytes are actively involved in the formation of the myelin sheath.  相似文献   

4.
NPP2, also known as phosphodiesterase-I alpha/autotaxin, is a type-II membrane protein that belongs to the nucleotide pyrophosphatase/phosphodiesterase family (NPP). We have recently demonstrated that NPP2 is expressed and released by differentiating oligodendrocytes during the critical stages of CNS myelination. The structural domains of this secreted macromolecule suggest a functional role in the regulation of oligodendrocyte adhesion. Here, we present data that demonstrates that NPP2 interferes with the ability of oligodendroglial cells to adhere to known CNS adhesion molecules present during the onset of myelination, such as fibronection, vitronectin, and merosin (laminin2). Responses to NPP2 appear to be regulated by a different mechanism depending on the developmental stage of the oligodendrocyte. Although the exact mechanisms for NPP2 mediated counter-adhesion are unknown, our studies have implicated that an active signalling mechanism involving heterotrimeric G proteins is responsible for adhesion modulation. These studies clearly define a role of NPP2 as a matricellular protein modulating oligodendrocyte adhesion and suggest that NPP2 function may represent the first step of oligodendrocyte remodelling when differentiating oligodendrocytes are actively involved in the formation of the myelin sheath.  相似文献   

5.
Tumor cell migration, invasion, and angiogenesis are important determinants of tumor aggressiveness, and these traits have been associated with the motility stimulating protein autotaxin (ATX). This protein is a member of the ectonucleotide pyrophosphatase and phosphodiesterase family of enzymes, but unlike other members of this group, ATX possesses lysophospholipase D activity. This enzymatic activity hydrolyzes lysophosphatidylcholine to generate the potent tumor growth factor and motogen lysophosphatidic acid (LPA). In the current study, we show a link between ATX expression, LPA, and vascular endothelial growth factor (VEGF) signaling in ovarian cancer cell lines. Exogenous addition of VEGF-A to cultured cells induces ATX expression and secretion, resulting in increased extracellular LPA production. This elevated LPA, acting through LPA(4), modulates VEGF responsiveness by inducing VEGF receptor (VEGFR)-2 expression. Down-regulation of ATX secretion in SKOV3 cells using antisense morpholino oligomers significantly attenuates cell motility responses to VEGF, ATX, LPA, and lysophosphatidylcholine. These effects are accompanied by decreased LPA(4) and VEGFR2 expression as well as by increased release of soluble VEGFR1. Because LPA was previously shown to increase VEGF expression in ovarian cancer, our data suggest a positive feedback loop involving VEGF, ATX, and its product LPA that could affect tumor progression in ovarian cancer cells.  相似文献   

6.
Autotaxin(ATX)是一个分泌型糖蛋白,具有磷酸二酯酶(PDE)活性,是胞外焦磷酸酶/磷酸二酯酶(ENPP)家族的一员.ATX还具有溶血磷脂酶D(lysoPLD)活性,能够以溶血磷脂酰胆碱(lysophosphatidylcholjne,LPC)为底物催化生成溶血磷脂酸(lysophosphatidic acid,LPA).ATX在很多肿瘤细胞中都有高表达,在肿瘤的发生、发展过程中有着重要作用,被认为是肿瘤治疗中一个可能的靶位.此外,ATX在神经系统、免疫系统中也发挥重要作用.目前已经建立了一系列快速检测ATX活性的方法,并在此基础上研发了相关疾病的诊断技术.基于ATX的多功能性,对其表达调控机理的研究和抑制剂的开发成为当前的研究热点.  相似文献   

7.
Lysophospholipase D and its role in LPA production   总被引:2,自引:0,他引:2  
Lysophosphatidic acid (LPA) is an important lipid mediator that binds to G-protein-coupled receptors of the Edg family, inducing proliferation and migration in many cell lines. Much has been learned about pathways involved in LPA signaling, but the pathways responsible for LPA production remain to be fully resolved. Several potential routes have been proposed for LPA production. One involves the sequential actions of phopholipase D (PLD) and phospholipase A(2) (PLA(2)). Another route involves the sequential actions of PLA(2) and lysophospholipase D (lysoPLD). LysoPLD is defined as an enzyme which hydrolyzes lysophospholipids to produce LPA. Two major forms of lysoPLD, microsomal and extracellular forms, have been reported. A microsomal lysoPLD plays an important role in the metabolism of platelet-activating factor (PAF) because of its preference for alkyl-phospholipids. The extracellular form of lysoPLD coexists with its substrate, lysophosphatidylcholine (LPC), in the extracellular compartment. LysoPLDs purified from the extracellular space have recently been shown to be molecularly identical to autotaxin (ATX). ATX, an enzyme previously known to possess 5'-nucleotide pyrophosphatase and phosphodiesterase (PDE) activities, was subsequently shown to have lysoPLD activity. The unexpected linkage of the extracellular lysoPLD with ATX has raised many interesting questions. The characterization and purification of lysoPLDs are reviewed here.  相似文献   

8.
Autotaxin (ATX), or ecto-nucleotide pyrophosphatase/phosphodiesterase-2, is a secreted lysophospholipase D (lysoPLD) that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA), a ligand for specific G protein-coupled receptors. ATX-LPA signaling is essential for development and has been implicated in a great diversity of (patho)physiological processes, ranging from lymphocyte homing to tumor progression. Structural and functional studies have revealed what makes ATX a unique lysoPLD, and how secreted ATX binds to its target cells. The ATX catalytic domain shows a characteristic bimetallic active site followed by a shallow binding groove that can accommodate nucleotides as well as the glycerol moiety of lysophospholipids, and by a deep lipid-binding pocket. In addition, the catalytic domain has an open tunnel of unknown function adjacent to the active site. Here, we discuss our current understanding of ATX structure-function relationships and signaling mechanisms, and how ATX isoforms use distinct mechanisms to target LPA production to the plasma membrane, notably binding to integrins and heparan sulfate proteoglycans. We also briefly discuss the development of drug-like inhibitors of ATX.  相似文献   

9.

Background

Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.

Methodology/Principal Findings

Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis.

Conclusion/Significance

Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases.  相似文献   

10.
We purified human plasma lysophospholipase D that produces physiologically active lysophosphatidic acid and showed that it is a soluble form of autotaxin, an ecto-nucleotide pyrophosphatase/phosphodiesterase, originally found as a tumor cell motility-stimulating factor. Its lower K(m) value for a lysophosphatidylcholine than that for a synthetic substrate of nucleotide suggests that lysophosphatidylcholine is a more likely physiological substrate for autotaxin and that its predicted physiological and pathophysiological functions could be mediated by its activity to produce lysophosphate acid, an intercellular mediator. Recombinant autotaxin was found to have lysophospholipase D activity; its substrate specificity and metal ion requirement were the same as those of the purified plasma enzyme. The activity of lysophospholipase D for exogenous lysophosphatidylcholine in human serum was found to increase in normal pregnant women at the third trimester of pregnancy and to a higher extent in patients in threatened preterm delivery, suggesting its roles in induction of parturition.  相似文献   

11.
Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), is a secreted enzyme that has lysophospholipase D activity, which converts lysophosphatidylcholine to bioactive lysophosphatidic acid. Lysophosphatidic acid activates at least six G-protein coupled recpetors, which promote cell proliferation, survival, migration and muscle contraction. These physiological effects become dysfunctional in the pathology of cancer, fibrosis, and pain. To date, several autotaxin/ENPP2 inhibitors have been reported; however, none were able to completely and continuously inhibit autotaxin/ENPP2 in vivo. In this study, we report the discovery of a highly potent autotaxin/ENPP2 inhibitor, ONO-8430506, which decreased plasma lysophosphatidic acid formation.The IC50 values of ONO-8540506 for lysophospholipase D activity were 6.4–19 nM for recombinant autotaxin/ENPP2 proteins and 4.7–11.6 nM for plasma from various animal species. Plasma lysophosphatidic acid formation during 1-h incubation was almost completely inhibited by the addition of >300 nM of the compound to human plasma. In addition, when administered orally to rats at a dose of 30 mg/kg, the compound demonstrated good pharmacokinetics in rats and persistently inhibited plasma lysophosphatidic acid formation even at 24 h after administration.Smooth muscle contraction is a known to be promoted by lysophosphatidic acid. In this study, we showed that dosing rats with ONO-8430506 decreased intraurethral pressure accompanied by urethral relaxation. These findings demonstrate the potential of this autotaxin/ENPP2 inhibitor for the treatment of various diseases caused by lysophosphatidic acid, including urethral obstructive disease such as benign prostatic hyperplasia.  相似文献   

12.
Autotaxin (ATX), or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2), is an exo-enzyme originally identified as a tumor cell autocrine motility factor. ATX is unique among the NPPs in that it primarily functions as a lysophospholipase D, converting lysophosphatidylcholine into the lipid mediator lysophosphatidic acid (LPA). LPA acts on specific G protein-coupled receptors to elicit a wide range of cellular responses, ranging from cell proliferation and migration to neurite remodeling and cytokine production. While LPA signaling has been studied extensively over the last decade, we are only now beginning to explore the properties and biological importance of ATX as the major LPA-producing phospholipase. In this review, we highlight recent advances in our understanding of the ATX-LPA axis, giving first an update on LPA action and then focusing on ATX, in particular its regulation, its link to cancer and its vital role in vascular development.  相似文献   

13.
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological actions. We have reported that LPA stimulates hepatic stellate cell proliferation and inhibits DNA synthesis in hepatocytes, suggesting that LPA might play some role in the liver. We have found that plasma LPA level and serum autotaxin (ATX) activity were increased in patients with chronic hepatitis C. However, the clinical significance of LPA and its synthetic enzyme, autotaxin (ATX), is still unclear. To determine whether the increase of plasma LPA level and serum ATX activity might be found generally in liver injury, we examined the possible modulation of them in the blood in rats with various liver injuries. Plasma LPA level and serum ATX activity were increased in carbon tetrachloride-induced liver fibrosis correlatively with fibrosis grade, in dimethylnitrosamine-induced acute liver injury correlatively with serum alanine aminotransferase level or in 70% hepatectomy as early as 3 h after the operation. Plasma LPA level was correlated with serum ATX activity in rats with chronic and acute liver injury. ATX mRNA in the liver was not altered in carbon tetrachloride-induced liver fibrosis. Plasma LPA level and serum ATX activity are increased in various liver injuries in relation to their severity. Whether increased ATX and LPA in the blood in liver injury is simply a result or also a cause of the injury should be further clarified.  相似文献   

14.
Autotaxin (ATX) or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2) is an NPP family member that promotes tumor cell motility, experimental metastasis, and angiogenesis. ATX primarily functions as a lysophospholipase D, generating the lipid mediator lysophosphatidic acid (LPA) from lysophosphatidylcholine. ATX uses a single catalytic site for the hydrolysis of both lipid and non-lipid phosphodiesters, but its regulation is not well understood. Using a new fluorescence resonance energy transfer-based phosphodiesterase sensor that reports ATX activity with high sensitivity, we show here that ATX is potently and specifically inhibited by LPA and sphingosine 1-phosphate (S1P) in a mixed-type manner (Ki approximately 10(-7) M). The homologous ecto-phosphodiesterase NPP1, which lacks lysophospholipase D activity, is insensitive to LPA and S1P. Our results suggest that, by repressing ATX activity, LPA can regulate its own biosynthesis in the extracellular environment, and they reveal a novel role for S1P as an inhibitor of ATX, in addition to its well established role as a receptor ligand.  相似文献   

15.
Autotaxin (ATX) is an autocrine motility factor that promotes cancer cell invasion, cell migration, and angiogenesis. ATX, originally discovered as a nucleotide phosphodiesterase, is known now to be responsible for the lysophospholipid-preferring phospholipase D activity in plasma. As such, it catalyzes the production of lysophosphatidic acid (LPA) from lysophophatidylcholine (LPC). ATX is thus an attractive drug target; small molecular inhibitors might be efficacious in slowing the spread of cancers. With this study we have generated a series of beta-keto and beta-hydroxy phosphonate derivatives of LPA, some of which are potent ATX inhibitors.  相似文献   

16.
Autotaxin is a type II ecto-nucleotide pyrophosphate phosphodiesterase enzyme. It has been recently discovered that autotaxin also catalyses a lyso-phospholipase D activity. This enzyme probably provides most of the extracellular lyso-phosphatidic acid from lyso-phosphatidylcholine. There is almost no pharmacological tools available to study autotaxin. Indeed, all the reported inhibitors, thus far, are uneasy-to-use, lyso-phosphatidic acid derivatives. Initially, autotaxin was recognized as a phosphodiesterase (NPP2) [Bollen et al., Curr. Rev. Biochem. Biol. 35 (2000) 393-432], based on sequence similarity and enzymatic capability of autotaxin to catalyse ecto-nucleotidase activity. Phosphodiesterase forms a large family of enzymes characterized by a large number of chemically diverse inhibitors. None of them have been tested on autotaxin activity. For this reason, we screened those reported inhibitors, as well as a series of compounds, mostly kinase inhibitor-oriented, on autotaxin activity. Only two compounds of the various phosphodiesterase inhibitors (calmidazolium and vinpocetine) were potent enough to inhibit autotaxin catalytic activity. From the kinase inhibitor library, we found damnacanthal and hypericin, inhibiting phosphodiesterase activity in the 100-microM range, comparable to most of other available phospholipid-like inhibitors.  相似文献   

17.
Autotaxin (ATX) is a member of the nucleotide pyrophosphatase/phosphodiesterase family of ectoenzymes that hydrolyzes phosphodiester bonds of various nucleotides. It possesses lysophospholipase D activity, catalyzing the hydrolysis of lysophosphatidylcholine into lysophosphatidic acid (LPA), and it is considered the major LPA-producing enzyme in the circulation. LPA is a bioactive phospholipid with diverse functions in almost every mammalian cell type, which exerts its action through binding to specific G protein-coupled receptors and stimulates various cellular functions, including migration, proliferation and survival. As a consequence, both ATX and LPA have attracted the interest of researchers, in an effort to understand their roles in physiology and pathophysiology. The present review article aims to summarize the existing knowledge as to the implications of ATX in chronic inflammatory diseases and cancer and to highlight the low molecular weight compounds, which have been developed as leads for the discovery of novel medicines to treat inflammatory diseases and cancer.  相似文献   

18.
19.
Autotaxin (ATX) is a tumor cell motility-stimulating factor, originally isolated from melanoma cell supernatants. ATX had been proposed to mediate its effects through 5'-nucleotide pyrophosphatase and phosphodiesterase activities. However, the ATX substrate mediating the increase in cellular motility remains to be identified. Here, we demonstrated that lysophospholipase D (lysoPLD) purified from fetal bovine serum, which catalyzes the production of the bioactive phospholipid mediator, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC), is identical to ATX. The Km value of ATX for LPC was 25-fold lower than that for the synthetic nucleoside substrate, p-nitrophenyl-tri-monophosphate. LPA mediates multiple biological functions including cytoskeletal reorganization, chemotaxis, and cell growth through activation of specific G protein-coupled receptors. Recombinant ATX, particularly in the presence of LPC, dramatically increased chemotaxis and proliferation of multiple different cell lines. Moreover, we demonstrate that several cancer cell lines release significant amounts of LPC, a substrate for ATX, into the culture medium. The demonstration that ATX and lysoPLD are identical suggests that autocrine or paracrine production of LPA contributes to tumor cell motility, survival, and proliferation. It also provides potential novel targets for therapy of pathophysiological states including cancer.  相似文献   

20.
Cofactor-independent phosphoglycerate mutase (iPGM) has been previously identified as a member of the alkaline phosphatase (AlkP) superfamily of enzymes, based on the conservation of the predicted metal-binding residues. Structural alignment of iPGM with AlkP and cerebroside sulfatase confirmed that all these enzymes have a common core structure and revealed similarly located conserved Ser (in iPGM and AlkP) or Cys (in sulfatases) residues in their active sites. In AlkP, this Ser residue is phosphorylated during catalysis, whereas in sulfatases the active site Cys residues are modified to formylglycine and sulfatated. Similarly located Thr residue forms a phosphoenzyme intermediate in one more enzyme of the AlkP superfamily, alkaline phosphodiesterase/nucleotide pyrophosphatase PC-1 (autotaxin). Using structure-based sequence alignment, we identified homologous Ser, Thr, or Cys residues in other enzymes of the AlkP superfamily, such as phosphopentomutase, phosphoglycerol transferase, phosphonoacetate hydrolase, and GPI-anchoring enzymes (glycosylphosphatidylinositol phosphoethanolamine transferases) MCD4, GPI7, and GPI13. We predict that catalytical cycles of all the enzymes of AlkP superfamily include phosphoenzyme (or sulfoenzyme) intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号