首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tn4451 is a 6.3-kb chloramphenicol resistance transposon from Clostridium perfringens and is found on the conjugative plasmid pIP401. The element undergoes spontaneous excision from multicopy plasmids in Escherichia coli and C. perfringens and conjugative excision from pIP401 in C. perfringens. Tn4451 is excised as a circular molecule which is probably the transposition intermediate. Excision of Tn4451 is dependent upon the site-specific recombinase TnpX, which contains potential motifs associated with both the resolvase/invertase and integrase families of recombinases. Site-directed mutagenesis of conserved amino acid residues within these domains was used to show that the resolvase/invertase domain was essential for TnpX-mediated excision of Tn4451 from multicopy plasmids in E. coli. An analysis of Tn4451 target sites revealed that the transposition process showed target site specificity. The Tn4451 target sequence resembled the junction of the circular form, and insertion occurred at a GA dinucleotide. Tn4451 insertions were flanked by directly repeated GA dinucleotides, and there was also a GA at the junction of the circular form, where the left and right termini of Tn4451 were fused. We propose a model for Tn4451 excision and insertion in which the resolvase/invertase domain of TnpX introduces 2-bp staggered cuts at these GA dinucleotides. Analysis of Tn4451 derivatives with altered GA dinucleotides provided experimental evidence to support the model.  相似文献   

2.
The aim of this study was to test the hypothesis that all conjugative R-plasmids of Clostridium perfringens are closely related to the previously characterized tetracycline resistance plasmid, pCW3. Fourteen conjugative R-plasmids derived from 11 C. perfringens strains isolated in Australia, the United States, France, Belgium, and Japan were analyzed. Eleven of the plasmids encoded tetracycline resistance while three carried both tetracycline and chloramphenicol resistance. Each of these plasmids was compared, by restriction analysis, to the reference plasmid, pCW3. Seven of the tetracycline resistance plasmids had EcoRI, XbaI, and ClaI restriction profiles that were identical to those of the corresponding pCW3 digests. The seven remaining R-plasmids were different from pCW3. Comparison of partial restriction maps of these plasmids with a complete map of pCW3 indicated that they contained at least 17 kb of DNA that also was present in pCW3. Hybridization analysis confirmed that these plasmids shared substantial homology with pCW3. The three tetracycline and chloramphenicol resistance plasmids frequently lost a 6-kb chloramphenicol resistance segment during conjugation. Cloning experiments showed that the chloramphenicol resistance determinant was expressed in Escherichia coli and that the chloramphenicol resistance gene of one of these plasmids, pIP401, was contained within a 1.5-kb region of the 6-kb deletion segment. Hybridization analysis indicated that the deletion segment of pIP401 was related to those of the other two chloramphenicol resistance plasmids. During the course of this study, conjugative R-plasmids which appear to be identical to pCW3 or closely related to pCW3 were identified from C. perfringens strains from human, animal and environmental sources in five countries. It is concluded that C. perfringens strains in humans and animals throughout the world have overlapping gene pools and that all the conjugative C. perfringens R-plasmids examined probably evolved from a pCW3-like element.  相似文献   

3.
L J Abraham  J I Rood 《Plasmid》1988,19(2):164-168
Nucleotide sequence analysis of the Tn4451-deletion derivatives, pJIR47 and pJIR86, which were derived from Escherichia coli and Clostridium perfringens, respectively, showed that the deletion events that led to the formation of these plasmids were identical and precise. The results also showed that the termini of this C. perfringens-derived transposon contained imperfect 12-bp inverted repeat sequences which had some sequence similarity with the termini of Tn3-like transposons.  相似文献   

4.
Tn1525, a kanamycin R determinant flanked by two direct copies of IS15   总被引:6,自引:0,他引:6  
We have isolated plasmid pIP112 (IncI1) from Salmonella panama and characterized by restriction endonucleases analysis and by recombinant DNA techniques a transposable element designated Tn1525. This 4.44 kilobase (kb) transposon confers resistance to kanamycin by synthesis of an aminoglycoside phosphotransferase (3') (5") type I and contains two copies of IS15 (1.5 kb) in direct orientation. The modular organisation of Tn1525 offers the possibility for intramolecular homologous recombination between the two terminal direct repeats and thus accounts for the in vivo structural lability of plasmid pIP112: instability of kanamycin resistance and tandem amplification of the kanamycin determinant. Other transposons mediating resistance to kanamycin by the same enzymatic mechanism were analysed by agarose and polyacrylamide gel electrophoresis, following digestion with restriction endonucleases, and by Southern hybridizations. These comparisons indicate that, although the structural genes for the phosphotransferases are homologous, Tn1525 differs from Tn903 and Tn2350 and is closely related but distinct from Tn6. Using the same techniques Tn1525 was detected on plasmids belonging to different incompatibility groups and originating from various species of Gram-negative clinical isolates. These results indicate that Tn1525 is representative of a new family of class I composite transposons already spread in diverse pathogenic bacterial genera.  相似文献   

5.
Sequence determination of the flanking regions of the vancomycin resistance van gene cluster carried by pIP816 in Enterococcus faecium BM4147 revealed similarity to transposons of the Tn3 family. Imperfect inverted repeats (36 of 38 bp) delineated a 10,851-bp element designated Tn1546. The 4-kb region located upstream from the vanR gene contained two open reading frames (ORF) transcribed in opposite directions. The deduced amino acid sequence of ORF1 (988 residues) displayed, respectively, 56 and 42% identity to those of the transposases of Tn4430 from Bacillus thuringiensis and of Tn917 from Enterococcus faecalis. The product of ORF2 (191 residues) was related to the resolvase of Tn917 (33% amino acid identity) and to the Res protein (48%) of plasmid pIP404 from Clostridium perfringens. Tn1546 transposed consecutively in Escherichia coli from plasmid pUC18 into pOX38 and from pOX38 into various sites of pBR329. Transposition was replicative, led to the formation of cointegrates, and produced a 5-bp duplication at the target site. Southern hybridization and DNA amplification revealed the presence of Tn1546-related elements in enterococci highly resistant to glycopeptides. Analysis of sequences surrounding these elements indicated that transposition plays a role in dissemination of the van gene cluster among replicons of human clinical isolates of E. faecium.  相似文献   

6.
J Collins  G Volckaert  P Nevers 《Gene》1982,19(1):139-146
The transposon Tn5 contains a unique central region bordered by 1.5-kb inverted repeats. The in vitro deletion of the centre of Tn5, with a restriction endonuclease (XhoI) which cuts within the inverted repeats leads to the production of a palindrome on subsequent ligation. This palindromic region is unstable on subsequent transformation into Escherichia coli (Collins, 1981). Precise excision of the Tn5 region plus one copy of the bracketing 9-bp direct repeat occurred in about one-third of the transformants. The rest of the transformants contain only remnants of the inverted repeat. Sequence analysis indicated that deletion had occurred between short direct repeats. The precise excision of these "nearly precise" excision products continued with high frequency and was found to be affected by mutations that interfere with the normal precise excision of transposons. In a recB, sbcB host precise excision was markedly reduced. A common mechanism is proposed for all recA-independent deletions occurring in E. coli.  相似文献   

7.
8.
Tn916 [carries tet(M)] is a 16.4-kb conjugative transposon that can establish itself in multiple copies in Enterococcus faecalis. To study the interaction of coresident homologous transposons during conjugation, an E. faecalis mutant defective in homologous recombination was utilized for construction of strains harboring Tn916 delta E (a derivative in which erm is substituted for tet) on the chromosome and Tn916 on a nonconjugative plasmid. When these strains were used as donors, the two transposons were able to transfer independently; however, they were found to transfer and become coestablished in the recipient up to 50% of the time. In contrast, cotransfer of a plasmid marker located outside the transposon occurred at a frequency of no greater than 0.5%. Separate experiments showed that mobilization of the nonconjugative plasmids pAM401 and pVA749 by chromosome-borne copies of Tn916 occurred only at low frequencies (generally less than 2% cotransfer). The data imply that the initiation of transposition of Tn916 results in a trans activation that is specific for homologous transposons present in the same cell.  相似文献   

9.
Plasmids coding for chloramphenicol resistance, five isolated from streptococci of groups A, B, and G, ten from enterococci (Enterococcus faecalis, Enterococcus faecium), and two from staphylococci, were tested for sequence homology with the chloramphenicol resistance gene of pIP501, a 30-kb plasmid originally isolated from a group B Streptococcus. The 6.3-kb HindIII fragment of pIP501, known to carry the chloramphenicol resistance gene, was cloned into pBR322. A 1.6-kb portion of the cloned fragment, which included most of the chloramphenicol resistance gene, was used as probe in DNA-DNA hybridization experiments. Sequence homology was detected between the probe and four of the streptococcal, seven of the enterococcal, and one of the staphylococcal plasmids. The absence of hybridization between this probe and one plasmid isolated from a group B Streptococcus, as well as three isolated from E. faecalis, indicated that there are at least two different plasmid-borne chloramphenicol resistance determinants in the streptococci and in the enterococci.  相似文献   

10.
Tn5253, carrying tetracycline and chloramphenicol resistance determinants, is a 65.5-kb conjugative transposon originally detected in the chromosome of Streptococcus pneumoniae BM6001. We have identified an 18-kb segment of DNA carrying the tet determinant within Tn5253 to be an independent conjugative transposon when removed from the context of the larger element. In vivo deletion of this DNA segment, now termed Tn5251, from within Tn5253 did not affect the conjugative transposition properties of the remaining sequences. Thus, Tn5253 is a composite element of two conjugative structures: Tn5252, constituting the sequences beyond Tn5251 within Tn5253, and Tn5251. The transfer properties of Tn5252 and Tn5251 suggest that these may belong to two different classes of mobile elements even though they were initially found associated. The notion that a tet-carrying transposon like Tn5251 may have been the ancestral element in the evolution of the larger streptococcal conjugative transposons must be reevaluated in the light of present observations.  相似文献   

11.
The plasmid-free Streptococcus pyogenes A454 contains a conjugative element, Tn3701, encoding resistance to erythromycin (Emr), tetracycline (Tcr), and minocycline (Mnr). We have mapped a 50-kilobase (kb) chromosomal region of A454 corresponding to the internal part of Tn3701. Tn3701 includes a 19.7-kb structure, designated Tn3703, on which the Emr Tcr Mnr determinants were localized. Tn3703 was very similar in structure to Tn916. Translocation of the Emr Tcr Mnr markers from A454 onto pIP964, an Enterococcus faecalis hemolysin plasmid, yielded different pIP964 derivatives. When the inserts of four of these derivatives were aligned with the 50-kb region of Tn3701, three of them were found to result from the transposition of Tn3703 and one resulted from the insertion of a 44.0-kb portion of Tn3701, including Tn3703. Tn3701 inserted, apparently without changing its structure, in the chromosomes of various streptococcal transconjugants, as well as in one of the 12 E. faecalis transconjugants studied. Tn3703 inserted at different chromosomal sites in four E. faecalis transconjugants, and one copy of Tn3701 plus an additional copy of Tn3703 were detected in the chromosomes of seven transconjugants.  相似文献   

12.
A 10.8-kb transposable DNA sequence conferring resistance to tetracycline resides on the IncY Escherichia coli plasmid pIP231. This sequence, designated Tn1523, was shown to insert into different sites of the replicons of the IncY prophage P1Cm c1.100 and the IncI1 plasmid pIP112. This process is not dependent on the host recombination system recA. Genetic results indicate that Tn1523 transposition involves the formation of a cointegrate intermediate, either between pIP231 and P1Cm c1.100, or between pIP231 and pIP112. These intermediates were found to be resolved into donor and recipient plasmids, each harboring a copy of the Tn1523 transposon. A stable structure formed by fusion of the pIP231 plasmid with the pIP112 plasmid was also observed. This event occurs in the absence of the bacterial recA gene product and seems to involve a site-specific reciprocal recombination between "IS-like" elements.  相似文献   

13.
Chloramphenicol resistance in Salmonella typhi is medicated by plasmids of the incompatibility group H, subgroup 1 (IncHI1). Eight IncHI1 plasmids from S. typhi strains originating in Mexico, Vietnam, Thailand, and India were examined by restriction enzyme digestion. The restriction enzymes, Apal, Xbal, and PstI were found to be most useful for comparison of plasmid DNAs. Four plasmids from S. typhi isolated in Mexico, Vietnam, and Thailand between 1972 and 1974 had identical restriction patterns with all three enzymes. The other IncHI1 plasmids showed only minor differences. However, some significant differences were noted between these IncHI1 plasmids and the prototype IncHI1 plasmid R27, which was isolated from S. typhimurium in 1961 and for which a restriction map has been constructed. Southern transfer hybridization with a nick-translated HI1 plasmid as a probe confirmed that there is a great deal of sequence homology among the IncHI1 plasmids. DNA probes were used to locate DNA sequences for ampicillin resistance (Tn3), chloramphenicol resistance (Tn9), tetracycline resistance (Tn10), and the one-way incompatibility between IncHI1 plasmids and the F factor, a characteristic property of IncHI1 plasmids. The results demonstrate that IncHI1 plasmids isolated from S. typhi from widely different geographic sources are very similar. Comparisons between the S. typhi plasmids and R27 indicated that conserved regions of DNA were those involved in conjugative transfer.  相似文献   

14.
An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum.  相似文献   

15.
We constructed a 7.9-kilobase-pair recombinant shuttle plasmid, designated pHR106, by combining desired segments of three plasmids: an Escherichia coli plasmid (pSL100) which provides a multiple cloning site, a Clostridium perfringens plasmid (pJU122) which provides a clostridial origin of replication, and an E. coli plasmid (pJIR62) which provides an E. coli origin of replication, an ampicillin resistance gene, and a chloramphenicol resistance gene of clostridial origin. The shuttle plasmid transformed E. coli HB101 with a frequency of 1 transformant per 10(4) viable cells and C. perfringens L-phase strain L-13 with a frequency of approximately 1 transformant per 10(6) viable cells. Because of the set of unique cloning sites and the chloramphenicol resistance marker, this shuttle plasmid should be particularly useful for studies of gene regulation and for enzyme production with C. perfringens.  相似文献   

16.
Clostridium perfringens strain CW92 carries pCW3, a conjugative 47-kb plasmid that confers inducible resistance to tetracycline. The plasmid was examined by restriction endonuclease analysis and by cloning each of the five ClaI fragments of pCW3 in Escherichia coli, using pBR322. Analysis of the recombinant plasmids allowed the deduction of a detailed restriction map of pCW3. The tetracycline resistance determinant of pCW3 was mapped by examining the phenotype of recombinant E. coli clones derived from the cloning, into pUC vector plasmids, of EcoRI fragments from pCW3. The C. perfringens tetracycline resistance determinant was expressed in E. coli and was shown to be located on two juxtaposed EcoRI fragments which together encompass a 4-kb region of pCW3. Deletion experiments showed that the tetracycline resistance gene, and/or its control regions, contained internal EcoRI and SphI sites. E. coli strains that carried recombinant plasmids with only the 4-kb region were found to express tetracycline resistance constitutively. In contrast, recombinant plasmids harboring a 10.5-kb ClaI fragment of pCW3, that included the 4-kb region, coded for an inducible tetracycline resistance phenotype. The existence of a negatively regulated resistance gene, similar to that proposed for several other bacteria is postulated.  相似文献   

17.
Conjugative tetracycline resistance plasmids from 15 Clostridium perfringens isolates from piggeries were analyzed by restriction endonuclease digestion and agarose gel electrophoresis. Seven isolates from one farm were found to carry a 47-kilobase pair (kb) plasmid, pJIR5, which had EcoRI, XbaI, and ClaI profiles that were identical to those of a previously characterized plasmid, pCW3. An isolate from a second farm was found to carry a plasmid, pJIR6, which also was indistinguishable from pCW3. Five additional isolates from a third farm carried a 67-kb plasmid, pJIR2, which had at least 29 kb of DNA in common with pCW3. Finally, two isolates from a fourth farm were found to carry a 50-kb plasmid pJIR4, which appeared to consist of an entire pCW3 molecule with a 3-kb insertion. Comparative restriction maps of pCW3, pJIR2, and pJIR4 that identified the regions of homology among these plasmids were constructed. We suggest that many conjugative tetracycline resistance plasmids in C. perfringens may contain a pCW3-like core.  相似文献   

18.
Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis.   总被引:10,自引:9,他引:1       下载免费PDF全文
Conjugal transposons play an important role in the dissemination of antibiotic resistance determinants in the streptococci and have been postulated to exist in Bacteroides fragilis. To investigate the presence of conjugal transposons in B. fragilis, we employed a Tra- derivative of the transfer factor pBFTM10 contained in the chimeric plasmid pGAT400 delta BglII. We attempted to restore transferability to this plasmid from a series of transconjugants generated by crossing B. fragilis TMP230 containing the TET transfer factor with B. fragilis TM4000, a standard recipient. Transconjugant TM4.2321 transferred pGAT400 delta BglII to Escherichia coli HB101 at almost the same frequency as did the Tra+ parental plasmid, pGAT400. Analysis of the transferred plasmids revealed the presence of 9.6 kilobases of additional DNA in every case but at different positions in independent isolates. The presence of this DNA, designated Tn4399, allowed the pGAT400 delta BglII derivatives to retransfer from the TM4000 background to B. fragilis or E. coli recipients. DNA hybridization studies demonstrated the presence of one copy of Tn4399 in TMP230 and three copies at new sites in TM4.2321. Tn4399 is a new B. fragilis transposon with unique transfer properties that may play a role in the dissemination of drug resistance genes. It differs from previously described conjugal transposons by its ability to mobilize nonconjugal plasmids in cis.  相似文献   

19.
Tetracycline resistance (Tcr) determinants from three different strains of Haemophilus parainfluenzae expressed 10-fold higher levels of resistance when mated into Escherichia coli. No plasmid was found in any of the E. coli recipients, even in matings in which a plasmid was identified in the donor Haemophilus sp. The Tcr determinant from Haemophilus sp. caused instability of resident plasmids in the recipient E. coli: all plasmids were lost within 30 generations in antibiotic-free media. However, by serial subculture in antibiotics, stable resident plasmids were obtained which carried the Tcr determinant from Haemophilus sp. and were transferable by conjugation and transformation among E. coli strains. All Haemophilus determinants hybridized with a probe for the Tcr determinant on Tn10, which bears inducible Tcr. However, Haemophilus determinants were constitutively resistant to tetracycline in the Haemophilus donors and in the E. coli recipients. This constitutive expression was recessive to wild-type Tn10 in the same cell, indicating that the constitutive phenotype resulted from the absence of an active repressor. Restrictive enzyme analysis of various E. coli plasmid derivatives bearing a Tcr determinant from Haemophilus sp. demonstrated that the inserted DNA was of similar size (8.95 to 9.35 kilobases), close to that of Tn10. Heteroduplex analysis and DNA:DNA hybridization confirmed that the Tcr determinant from Haemophilus sp. had greater than 90% homology with the Tn10 determinant, including the DNA sequence for the repressor.  相似文献   

20.
Two different enteric plasmids of widely separate origins were observed to carry a new 15.3-kb trimethoprim resistance transposon, Tn5086, also mediating resistance to mercuric ions and to a low level of sulfonamide. The trimethoprim resistance gene characterized from Tn5086 was found to be distinct from those found earlier and was designated type VII. Molecular analysis demonstrated that Tn5086 is closely related to Tn21. The internal part of Tn21 and Tn5086, the element referred to as the integron, was found to be different. First, the integron of Tn5086 contains a 0.62-kb cassette formed by the trimethoprim resistance gene dhfrVII and its immediate surroundings instead of the 0.86-kb aadA1 cassette of Tn21. Second, the integron of Tn5086 lacks a 4.2-kb segment 3' of sulI in Tn21. The dhfrVII gene commences with a UUG codon but was otherwise seen to be markedly related to the cassette genes dhfrI, dhfrV, and dhfrVI. The four related dihydrofolate reductases of 157 amino acids encoded by these genes contain a glutamate instead of the aspartic acid residue found at position 27 of the active center of the chromosomal enzyme from Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号