首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Phylogenetic relationship and the rates of evolution of mammalian alcohol dehydrogenases (ADHs) have been studied by using the amino acid sequences from the human (ADH alpha, ADH beta, and ADH gamma), rat, mouse, and horse (ADH E and ADH S). With the maize ADH1 and ADH2 used as references, the patterns of the amino acid replacements in the beta-sheets, alpha-helices, and random coils in each of the catalytic and coenzyme-binding domains were analyzed separately. The phylogenetic trees based on the different sets of amino acid substitutions consistently showed that (1) multiple ADHs in human and horse have arisen after mammalian radiation, (2) the common ancestor of human ADHs alpha and beta diverged from the ancestor of ADH gamma first and the former two ADHs diverged from each other more recently, and (3) the human ADHs are more closely related to the rodent ADHs than to the horse ADHs. Furthermore, the estimated branch lengths showed that the rodent ADHs are evolving faster than the other ADHs. This difference in evolutionary rate between the two groups of organisms is explainable either in terms of the difference in the number of cell generations per year or in terms of reduction of functional constraints.  相似文献   

6.
7.
The activity of the rat class I alcohol dehydrogenase (ADH) is enriched in certain tissues including the liver, intestine and testis. The tissue-specific expression of the gene encoding ADH in the rat was studied and found to closely correlate with tissue isozymic activity. A factor designated enhancer-site downstream binding protein (EDBP) was recently identified in the rat liver and found to interact with the proximal promoter of the class I ADH gene. The distribution of EDBP in nuclear extracts obtained from various tissues was examined based on its sequence-specific DNA binding property and found to correlate with tissue ADH expression. These findings suggest that EDBP is potentially a positive regulatory factor which is involved in controlling the tissue-specific expression of the ADH gene.  相似文献   

8.
Structure and expression of a chicken MHC class I gene   总被引:7,自引:0,他引:7  
  相似文献   

9.
10.
11.
Chromosomal DNA samples derived from various primates and other mammals (horse, sheep, rabbit, and mouse) were digested with restriction endonuclease and hybridized with a probe of the sixth exon of the human ADH gene, which is highly conserved in the class I alcohol dehydrogenase of these mammalian species. The copy number of the class I ADH gene in each species was estimated from the number of hybridized bands. Primate DNA samples showed three distinct bands in the blots of PstI digest and DraI digest. Moreover, most of the bands from primate DNA showed a similarity in size so as to allow us to assign the ADH1, ADH2, and ADH3 homologues in each species. In contrast, mouse has only one gene, and rabbit, sheep, and horse seem to have only two genes, for the class I ADH, which showed divergent hybridization bands. These results are consistent with the view that the human class I ADH gene cluster has been generated through gene multiplication events which occurred before the Catarrhini branch point in the course of primate evolution.  相似文献   

12.
13.
The mouse Adh1 gene exhibits tissue-specific regulation, is developmentally regulated, and is androgen regulated in kidney and adrenal tissue. To study this complex regulation phenotype a transgenic mouse approach has been used to investigate regulatory regions of the gene necessary for proper tissue expression and hormonal control. Transgenic mice have been produced with an Adh1 minigene as a reporter behind either 2.5- or 10 kb of 5'-flanking sequence [1]. Complete androgen regulation in kidney requires a region between -2.5 and -10 kb. A sequence extending to -10 kb does not confer liver expression in this minigene construct. B6.S mice express an electrophoretically variant protein resulting from a known nucleotide substitution resulting in a restriction endonuclease length polymorphism. Transgenic mice harboring B6.S cosmids can be studied for expression analysis at both protein and mRNA levels, identification of transgenic founders and inheritance studies are greatly facilitated by a PCR-restriction endonuclease cleavage approach, the entire mouse gene is used as a reporter, and the formation of heterodimeric enzyme molecules can be used to infer expression of the transgene in the proper cell types within a given tissue. Expression of a B6.S cosmid containing the entire Adh1 gene and 6 kb of 5'- and 21 kb of 3'-flanking region occurs in transgenic mice in a copy number dependent manner in a number of tissues, but expression in liver does not occur. The ability to analyze expression at the protein and mRNA levels has been confirmed using this system. Future directions will involve the use of large BAC clones modified by RARE cleavage to identify the liver specific elements necessary for expression.  相似文献   

14.
The mouse Adh1 gene exhibits tissue-specific regulation, is developmentally regulated, and is androgen regulated in kidney and adrenal tissue. To study this complex regulation phenotype a transgenic mouse approach has been used to investigate regulatory regions of the gene necessary for proper tissue expression and hormonal control. Transgenic mice have been produced with an Adh1 minigene as a reporter behind either 2.5- or 10 kb of 5′-flanking sequence [1]. Complete androgen regulation in kidney requires a region between −2.5 and −10 kb. A sequence extending to −10 kb does not confer liver expression in this minigene construct. B6.S mice express an electrophoretically variant protein resulting from a known nucleotide substitution resulting in a restriction endonuclease length polymorphism. Transgenic mice harboring B6.S cosmids can be studied for expression analysis at both protein and mRNA levels, identification of transgenic founders and inheritance studies are greatly facilitated by a PCR-restriction endonuclease cleavage approach, the entire mouse gene is used as a reporter, and the formation of heterodimeric enzyme molecules can be used to infer expression of the transgene in the proper cell types within a given tissue. Expression of a B6.S cosmid containing the entire Adh1 gene and 6 kb of 5′- and 21 kb of 3′-flanking region occurs in transgenic mice in a copy number dependent manner in a number of tissues, but expression in liver does not occur. The ability to analyze expression at the protein and mRNA levels has been confirmed using this system. Future directions will involve the use of large BAC clones modified by RARE cleavage to identify the liver specific elements necessary for expression.  相似文献   

15.
16.
The alpha subunit of human liver alcohol dehydrogenase has been submitted to structural analysis. Together with earlier work on the beta and gamma subunits, the results allow conclusions on the relationship of all known forms of the class I type of the enzyme. Two segments of the alpha subunit were determined; one was also reinvestigated in the beta and gamma subunits. The results establish 11 residue replacements among class I subunits in the segments analyzed and show that the alpha, beta, and gamma protein chains each are structurally distinct in the active site regions, where replacements affect positions influencing coenzyme binding (position 47; Gly in alpha, Arg in beta and gamma) and substrate specificity (position 48; Thr in alpha and beta, Ser in gamma). Residue 128, previously not detected in beta and gamma subunits, corresponds to a position of another isozyme difference (Arg in beta and gamma, Ser in alpha). The many amino acid replacements in alcohol dehydrogenases even at their active sites illustrate that in judgements of enzyme functions absolute importance of single residues should not be overemphasized. Available data suggest that alpha and gamma are the more dissimilar forms within the family of the three class I subunits that have resulted from two gene duplications. The class distinction of alcohol dehydrogenases previously suggested from enzymatic, electrophoretic, and immunological properties therefore also holds true in relation to their structures.  相似文献   

17.
Livers of rabbits contain three classes of alcohol dehydrogenase (ADH) isozymes which are highly analogous to the human classes. Class I ADHs migrate toward cathode on starch gel and are very sensitive to 4-methylpyrazole (4-MePz) inhibition. Class II ADH migrates slowly toward anode and is less sensitive to 4-MePz. Class III ADH migrates rapidly toward anode and is insensitive to 4-MePz. There are one class II, one class III and at least three class I ADH isozymes present in the rabbit liver. The three class I isozymes purified to homogeneity are all dimers with subunit molecular weight of 41700. Two are heterodimers composed of A-, C-chains and B-, C-chains, respectively. The third one is a homodimer, contains only the C-chain. These results indicate that among all the mammals examined, rabbit ADH bears the greatest resemblance to the human enzyme.  相似文献   

18.
F Briganti  W P Fong  D S Auld  B L Vallee 《Biochemistry》1989,28(13):5374-5379
Freezing (-78 degrees C) and thawing (25 degrees C) a heterodimeric human alcohol dehydrogenase class I isozyme in the presence of 0.1 M sodium phosphate/0.1 mM DTT, pH 7.0, and the subsequent separation of the scrambled isozymes by HPLC are used to prepare homodimers from heterodimers, with recovery of enzyme activity ranging from 80 to 95%. The ratio of the three isozymes obtained from a heterodimer follows the binomial distribution of 1:2:1, indicating random reassociation of the two subunits. The physical and enzymatic properties of the reassociated isozymes are the same as those obtained directly from human liver preparations. The nature of subunit-subunit interactions of human ADH class I isozymes is examined by optimizing the conditions required for the formation of the new dimers "in vitro". The effect of a number of reagents previously used in the reversible dissociation of dehydrogenases is investigated. The coenzyme NAD+ is a potent inhibitor of the dissociation of dimers during the freeze/thaw procedure. The presence of sodium phosphate in the enzyme solution is essential during the freezing and thawing experiment. No appreciable dissociation/reassociation occurs in TES, HEPES, or even potassium phosphate. The reversible dissociation is due primarily to the decrease in pH because of the low solubility of Na2HPO4 at low temperatures. The reassociation occurs after thawing in a temperature-dependent process. There is no reactivation if the enzyme is incubated at 0 degrees C after thawing, while at 25 degrees C high recovery in activity is achieved in a time period ranging from 15 to 90 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号