首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The parameters of energy coupling of mitochondria isolated from the livers of hibernating and awakening gophers were studied. The ATP/ADP-antiporter inhibitor carboxyatractylate slowed down the respiration rate, increased delta psi and decreased the ionic conductivity of the inner mitochondrial membrane as measured by the rate of the delta psi decline after addition of cyanide (in the presence of oligomycin and EGTA). A similar effect was produced by BSA, carboxyatractylate being fairly ineffective in the presence of BSA. In hibernating gophers the maximal rate of the uncoupled respiration and the ionic conductivity of the inner mitochondrial membrane were markedly decreased as compared with awakening gophers. The data obtained suggest that in awakening animals fatty acids induce the uncoupling of oxidative phosphorylation by the ATP/ADP-antiporter, this process being simultaneous with the activation of the respiratory chain.  相似文献   

2.
1. The rates of oxidation of various substrates (beta-hydroxybutyrate, succinate, ascorbate + TMPD) and the rate of ATP synthesis in liver mitochondria from active and hibernating ground squirrels were measured. 2. It was shown that the rate of mitochondrial respiration is significantly lower in hibernating animals than in active animals. 3. The degree of inhibition of mitochondrial respiration in hibernating ground squirrels was found to correlate with the length of the respiratory chain fragment involved in the oxidation of a given substrate. 4. The inhibition of mitochondrial respiration in hibernating animals was accompanied by a decrease in the rate of ATP synthesis. 5. The activity of phospholipase A2 in liver mitochondria from hibernating ground squirrels was found to be decreased. The activation of phospholipase A2 by Ca2+ ions eliminated the inhibition of respiration almost completely. 6. It was assumed that the inhibition of mitochondrial respiration during hibernation is (a) related to the suppression of phospholipase A2 activity and (b) caused by the reduced rates of electron transport through the respiratory chain and/or of substrate transport across the mitochondrial membrane.  相似文献   

3.
The rate of respiration and ATP synthesis in liver mitochondria (M) isolated from hibernating ground squirrels and incubated in the medium with normal tonicity (250 mosm) was shown to be considerably lower than the rate of respiration and ATP synthesis in liver M from active animals. The increase of the medium tonicity to 600 mosm simulated the state of M from hibernating animals, resulting in a decrease of the respiration rate of M from active ground squirrels. On the contrary, the decrease of the tonicity to 60 mosm caused the activation of the respiration and increase of the ATP synthesis in M from hibernating ground squirrels. Bromophenacylbromide (BPhB), an inhibitor of phospholipase A2, prevented the activation of the respiration of M from hibernating animals incubated in the medium with low tonicity. BPhB had practically no effect on the respiration of M from both hibernating and active ground squirrels as well as on the swelling of M in hypotonic medium. It was concluded that the activation of the respiration and increase of the ATP synthesis rate in M from hibernating ground squirrels incubated in the medium with low tonicity is related to the activation of phospholipase A2. It was assumed that decrease of phospholipase A2 activity and change in the lipid composition of mitochondrial membrane may be one of the reasons for inhibition of the respiration rate in M from hibernating ground squirrels.  相似文献   

4.
Studies have been made on the permeability of the inner membrane of the liver mitochondria from hibernating and active ground squirrels for succinate, glutamate, hydroxybutyrate and inorganic phosphate. The permeability was calculated from the rate of mitochondrial swelling in 100 mM ammonium salts of the substrates and phosphate. It was shown that the rate of mitochondrial swelling in hibernating animals is 2--3 times lower than in active ones, being essentially identical in a solution of ammonium phosphate. It was concluded that the permeability of the inner mitochondrial membrane for the substrates decreases in hibernating animals, remaining unaffected for phosphate. Calcium-induced activation of membrane phospholipase A2 facilitates the transport of oxidative substrates into the mitochondria of hibernating ground squirrels, significant increase in the mitochondrial respiration being simultaneously observed. The data obtained suggest that inhibition of transport of oxidative substrates is one of the main factors which account for a low respiration rate in the mitochondria of hibernating animals.  相似文献   

5.
The possible mechanisms in regulation of the respiration rate of mitochondria from liver of hibernating ground squirrels have been investigated. The inhibition of respiration has been shown to be mainly due to the inhibition of electron transfer to the respiratory chain from flavoproteins to cytochrome c. Calcium ions evoke the gradual increase in the respiration rate of mitochondria from liver of hibernating ground squirrels which is abolished by adding albumin, ruthenium red and sovcaine. The lower content of free fatty acids and decreased rate of the oxidation of exogenic NADH in the external pathway indicate the decrease in the activity of phospholipase A2 in mitochondria from liver of hibernating ground squirrels. The decreased calcium capacity of mitochondria indicates the higher sensitivity to calcium ions. A conclusion concerning the leading role of phospholipase A2 in Ca-induced activation of respiration of mitochondria from liver of hibernating ground squirrels is made.  相似文献   

6.
We compared liver and skeletal muscle mitochondrial function among activity states to characterize regulated reversible metabolic suppression in the mammalian hibernator Spermophilus tridecemlineatus. At 37 degrees C, succinate oxidation was 70% lower in the liver mitochondria from torpid animals than in those from summer-active animals or in animals arousing from torpor. Respiration was very sensitive to temperature (Q(10) 5.8-9.8), and when measured at 25 degrees or 5 degrees C there was no difference among the three states. Liver mitochondria from summer-active animals oxidized pyruvate and beta -hydroxybutyrate at higher rates than those from torpid animals, and flux through complex 4 of the electron transport chain was about three- and fivefold higher than flux through complexes 2-4 and complexes 1-4, respectively. In the hibernating and arousing animals there was no difference in flux through complexes 2-4 and complex 4, suggesting a downregulation of cytochrome c oxidase in liver mitochondria during the hibernation season. Muscle mitochondrial respiration did not differ between the torpid and summer-active states in any of the parameters measured. The data support a regulated, reversible decrease of liver (but not muscle) mitochondrial oxidative phosphorylation in hibernating ground squirrels.  相似文献   

7.
The mechanisms for regulating the rate of respiration and oxidative phosphorylation in liver mitochondria from hibernating ground squirrels were studied. The microviscosity of the mitochondrial membrane in hibernating squirrels was found to be higher than that in active animals. Probably, a high microviscosity of the membrane causes a decreases in the rate of the transport of oxidation substrates into the mitochondrial matrix, which in turn may be one of the main reasons for the inhibition of mitochondrial respiration in hibernating squirrels. The activation of phospholipase A2 in a hypotonic medium results in the acceleration of the respiration and phosphorylation in the mitochondria from hibernating squirrels and is accompanied by the increase of the transport of substrates across the mitochondrial membrane. The inhibition of phospholipase A2 decreases Ca2+--induced acceleration of the transport of substrates and prevents the activation of the respiration and phosphorylation in a hypotonic medium.  相似文献   

8.
The ATP/ADP-antiporter inhibitors and the substrate ADP suppress the uncoupling effect induced by low (10-20 microM) concentrations of palmitate in mitochondria from skeletal muscle and liver. The inhibitors and ADP are found to (a) inhibit the palmitate-stimulated respiration in the controlled state and (b) increase the membrane potential lowered by palmitate. The degree of efficiency decreases in the order: carboxyatractylate (CAtr) greater than ADP greater than bongkrekic acid, atractylate. GDP is ineffective, Mg.ADP is of much smaller effect, whereas ATP is effective at much higher concentration than is ADP. Inhibitor concentrations, which maximally suppress the palmitate-stimulated respiration, correspond to those needed for arresting the state 3 respiration. The extent of the CAtr-sensitive stimulation of respiration by palmitate has been found to decrease with an increase in palmitate concentration. Stimulation of the controlled respiration by p-trifluoromethoxycarbonylcyanide phenylhydrozone (FCCP) and gramicidin D at any concentrations of these uncouplers is CAtr-insensitive, whereas that caused by a low concentrations of 2,4-dinitrophenol and dodecyl sulfate is inhibited by CAtr. The above effect of palmitate develops immediately after addition of the fatty acid. It is resistant to EGTA as well as to inhibitors of phospholipase (nupercain) and of lipid peroxidation (ionol). Moreover, palmitate accelerates spontaneous release of the respiratory control, developing in rat liver mitochondria under certain conditions. This effect takes several minutes, being sensitive to EGTA, nupercain and ionol. Like the fast uncoupling, this slow effect is inhibited by ADP but CAtr and atractylate are stimulatory rather than inhibitory. In artificial planar phospholipid membrane, palmitate does not increase the membrane conductance, FCCP increases it strongly and dinitrophenol only slightly. In cytochrome oxidase proteoliposomes, FCCP, gramicidin and dinitrophenol (less effectively) lower, whereas palmitate enhances the cytochrome-oxidase-generated membrane potential. In this system, monensin substitutes for palmitate. It is concluded that the ATP/ADP antiporter is somehow involved in the uncoupling effect caused by low concentrations of palmitate and, partially, of dinitrophenol, whereas uncoupling produced by FCCP and gramicidin is due to their action on the phospholipid part of the mitochondrial membrane. A possible mechanism of this effect is discussed.  相似文献   

9.
The state of adenylate system and intensity of oxidative phosphorylation in liver mitochondria of active and hibernating ground squirrels were studied depending on the concentration of extramitochondrial Ca2+ ([Ca2+]ex). It was shown that at [Ca2+]ex.10(-7) M, the content of ATP as well as ATP/ADP ratio are slightly lower in the mitochondria of hibernating ground squirrels than in the mitochondria of active animals. The other parameters of the adenylate system under the same conditions differ insignificantly. [Ca2+]ex increase to 10(-6) M has little effect on the parameters of the adenylate system of active animals. On the contrary, the mitochondria of hibernating ground squirrels are strongly affected: the level of ATP is 1.5-fold and the ratio of ATP/ADP is almost 2-fold decreased. At both [Ca2+]ex the intensity of oxidative phosphorylation is essentially higher in the mitochondria of active ground squirrels. With increasing [Ca2+]ex the rate of ATP synthesis decreases, and in the mitochondria of hibernating animals the decrease is more pronounced than in the mitochondria of active animals. Thus, oxidative phosphorylation and adenylate system of mitochondria from hibernating ground squirrels are more sensitive to [Ca2+]ex increase than those of the mitochondria of active animals.  相似文献   

10.
1. The causes of the suppression of oxidative phosphorylation and energy-dependent cationic transport into liver mitochondria of hibernating gophers have been analysed. 2. The decrease of the ATP synthesis rate and suppression of the energy-dependent K(+)- and Ca(2+)-transport into mitochondria during hibernation has been found to be mainly related to a delta psi decrease in mitochondria of hibernating gophers. 3. The increase delta psi upon incubation of the mitochondria of hibernating animals in a hypotonic medium results in an essential acceleration of ATP synthesis and energy-dependent cationic transport.  相似文献   

11.
The effects of ATP/ADP-antiporter inhibitors on the uncoupling of oxidative phosphorylation by palmitic acid, detergents and protonophore FCCP in liver mitochondria were studied. The uncoupling activity of these compounds was estimated by their stimulating effect on succinate oxidation and H+ conductivity of the inner mitochondrial membrane in the presence of oligomycin. Carboxyatractylate and pyridoxal 5-phosphate suppressed the uncoupling effects of palmitic acid and anionic detergents but had no effect on the uncoupling action of the nonionic detergent Triton X-100, the cationic detergent CTAB and FCCP. The data obtained are discussed in terms of the putative role of the ATP/ADP-antiporter in the electrophoretic transport of hydrophobic anions from the mitochondria.  相似文献   

12.
The effect of ATP/ADP-antiporter inhibitors on palmitate-induced uncoupling was studied in heart muscle mitochondria and inside-out submitochondrial particles. In both systems palmitate is found to decrease the respiration-generated membrane potential. In mitochondria, this effect is specifically abolished by carboxyatractylate (CAtr) a non-penetrating inhibitor of antiporter. In submitochondrial particles, CAtr does not abolish the palmitate-induced potential decrease. At the same time, bongkrekic acid, a penetrating inhibitor of the antiporter, suppresses the palmitate effect on the potential both in mitochondria and particles. Palmitoyl-CoA which is known to inhibit the antiporter in mitochondria as well as in particles decreases the palmitate uncoupling efficiency in both these systems. These data are in agreement with the hypothesis that the ATP/ADP-antiporter is involved in the action of free fatty acids as natural uncouplers of oxidative phosphorylation.  相似文献   

13.
The action of ATP/ADP-antiporter inhibitors upon the uncoupling effect of palmitate, detergents and 'classical' uncouplers has been studied. The uncoupling effect was estimated by stimulation of succinate oxidation and of H+ permeability of rat liver mitochondria in the presence of oligomycin. It is shown that carboxyatractylate (CAtr) and pyridoxal 5-phosphate (PLP) suppress the uncoupling induced by palmitate and the anionic detergents SDS and cholate, but do not affect that induced by the cationic detergents CTAB, by the non-ionic detergent Triton X-100, as well as by the 'classical' uncouplers FCCP and DNP. The results are discussed in terms of a concept assuming that the ATP/ADP-antiporter facilitates the electrophoretic export of hydrophobic anions from mitochondria.  相似文献   

14.
The UCP1 [first UCP (uncoupling protein)] that is found in the mitochondria of brown adipocytes [BAT (brown adipose tissue)] regulates the heat production, a process linked to non-shivering thermogenesis. The activity of UCP1 is modulated by GDP and fatty acids. In this report, we demonstrate that respiration and heat released by BAT mitochondria vary depending on the respiratory substrate utilized and the coupling state of the mitochondria. It has already been established that, in the presence of pyruvate/malate, BAT mitochondria are coupled by faf-BSA (fatty-acid-free BSA) and GDP, leading to an increase in ATP synthesis and mitochondrial membrane potential along with simultaneous decreases in both the rates of respiration and heat production. Oleate restores the uncoupled state, inhibiting ATP synthesis and increasing the rates of both respiration and heat production. We now show that in the presence of succinate: (i) the rates of uncoupled mitochondria respiration and heat production are five times slower than in the presence of pyruvate/malate; (ii) faf-BSA and GDP accelerate heat and respiration as a result and, in coupled mitochondria, these two rates are accelerated compared with pyruvate/malate; (iii) in spite of the differences in respiration and heat production noted with the two substrates, the membrane potential and the ATP synthesized were the same; and (iv) oleate promoted a decrease in heat production and respiration in coupled mitochondria, an effect different from that observed using pyruvate/malate. These effects are not related to the production of ROS (reactive oxygen species). We suggest that succinate could stimulate a new route to heat production in BAT mitochondria.  相似文献   

15.
16.
A significant proportion of standard metabolic rate is devoted to driving mitochondrial proton leak, and this futile cycle may be a site of metabolic control during hibernation. To determine if the proton leak pathway is decreased during metabolic depression related to hibernation, mitochondria were isolated from liver and skeletal muscle of nonhibernating (active) and hibernating arctic ground squirrels (Spermophilus parryii). At an assay temperature of 37 degrees C, state 3 and state 4 respiration rates and state 4 membrane potential were significantly depressed in liver mitochondria isolated from hibernators. In contrast, state 3 and state 4 respiration rates and membrane potentials were unchanged during hibernation in skeletal muscle mitochondria. The decrease in oxygen consumption of liver mitochondria was achieved by reduced activity of the set of reactions generating the proton gradient but not by a lowered proton permeability. These results suggest that mitochondrial proton conductance is unchanged during hibernation and that the reduced metabolism in hibernators is a partial consequence of tissue-specific depression of substrate oxidation.  相似文献   

17.
The uncoupler-induced inactivation of H(+)-ATPase in liver mitochondria from ground squirrel has been studied. The dependence of this process on delta mu H+, pH and ATP indicates that it is caused by the protein inhibitor. This conclusion is also supported by the protective effect of Zn2+ and Cu2+. The inactivation can be induced by Ca2+ at low concentrations in the presence of phosphate. It is shown that the protein inhibitor inactivates ATPase almost completely under optimal conditions while its effect in mice or rat liver mitochondria does not exceed 30%. The potential efficiency of the inhibitor's action does not depend on either the season or the state of animals (hibernating or active). At the same time, the sensitivity of this system to Ca2+ is significantly lower in active (summer) animals.  相似文献   

18.
Activation of initially suppressed oxidative phosphorylation and energy-dependent uptake of Ca2+ and K+ ions by liver mitochondria of hibernating gophers which is prevented by phospholipase A2 inhibitors, has been shown to occur in hypotonic media. Partial inhibition of the respiratory chain of liver mitochondria of active gophers by antimycin A which causes a decrease in the uncoupled respiration rate and delta psi down to values typical of mitochondria of hibernating gophers, practically exactly reproduced the suppression of oxidative phosphorylation and energy-dependent uptake of cations observed during hibernation. It was concluded that partial deenergization arising as a result of inhibition of the respiratory chain is the main and unique cause of suppression of energy-dependent functions of liver mitochondria of hibernating gophers.  相似文献   

19.
Cardiac mitochondrial respiration, ATP synthase activity, and membrane potential and intactness were evaluated in copper-deficient rats. In the presence of NADH, both copper-deficient and copper-adequate mitochondria had very low oxygen consumption rates, indicating membrane intactness. However copper-deficient mitochondria had significantly lower oxygen consumption rates with NADH than did copper-adequate mitochondria. Copper-deficient mitochondria had significantly lower membrane potential than did copper-adequate mitochondria using fluorescent dyes. Copper-deficient mitochondria had significantly lower state 3 oxygen consumption rates and were less sensitive to inhibition by oligomycin, an ATP synthase inhibitor. Copper-deficient and copper-adequate mitochondria responded similiarly to CCCP. No difference was observed in mitochondrial ATPase activity between copper-deficient and copper-adequate rats using submitochondrial particles. We conclude that cardiac mitochondrial respiration is compromised in copper-deficient rats, and may be related to an altered ATP synthase complex and/or a decreased mitochondrial membrane potential.  相似文献   

20.
Lim HY  Ho QS  Low J  Choolani M  Wong KP 《Mitochondrion》2011,11(3):437-443
Impaired respiration was proposed by Warburg to be responsible for aerobic glycolysis in cancer cells. However, intact mitochondria isolated from human ovarian and peritoneal cancer tissues exhibit substantive oxidative phosphorylating activities in terms of membrane potential, ATP biosynthesis and oxygen consumption. The specific activities of succinate, malate and glutamate dehydrogenases are comparable to reported values for human skeletal muscle, heart and liver but the rate of ATP production is one order of magnitude lower compared to human skeletal muscle. It was concluded that the TCA cycle is functional in these ovarian cancer tissues which contain OXPHOS competent mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号