首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to clarify the environmental factors modulating cell migration, we investigated the effects of human serum on cell migration, and found that serum from adult donors strongly (by 48%) suppressed the migration of human fetal skin fibroblasts into a denuded area in a cell monolayer. Human serum from old donors inhibited cell migration more strongly than that from adult donors. Next, we investigated the properties of migration-inhibitory activity of human serum and serum proteins in order to identify migration-inhibitory substances. Human serum from adult donors strongly suppressed the migration of human fetal skin fibroblasts, although it stimulated cell proliferation more strongly than fetal bovine serum (FBS), indicating that the inhibitory effects of human serum on cell migration was not due to its toxic effects. The inhibition of cell migration by human serum was concentration dependent. It was demonsstrated that the inhibition did not depend on the inhibitory effects of human serum on collagen synthesis. The migration-inhibitory activity was seen in fractions over 100 kDa, as determined by an ultrafiltration membrane, and no inhibitory activity was observed in fractions under 100 kDa. On the other hand, it was not detected either in fractions over 100 kDa or under 100 kDa in FBS. Among the over 100 kDa human serum proteins examined, γ-globulin, α2-macroglobulin, and low density lipoprotein (LDL) suppressed fibroblast migration in a concentration-dependent manner. However, among the three, cell migration-inhibiting activity of γ-globulin almost disappeared when cell migration was conducted in 10% FBS-supplemented medium. These results indicated that α2-macroglobulin and LDL were candidate substances for cell migration-inhibiting activity in human serum.  相似文献   

2.
3.
The effects of fresh human serum (FHS) and heat-inactivated human serum (HHS) on the DNA synthesis and proliferation of human diploid fibroblasts were assessed. FHS activated significantly more quiescent fibroblasts to undergo DNA synthesis and proliferation than did HHS. The stimulatory effect occurred consistently over a serum concentration range of 0.1–10%. Using bromodeoxyuridine selective killing techniques, it was shown that this FHS stimulatory effect was on a specific subpopulation of fibroblasts unresponsive to HHS. The involvement of the complement system, and specifically of C1, was shown by the inability of Clq-depleted FHS to support enhanced DNA synthesis whereas Clq-depleted serum reconstituted with purified Clq was effective. Purified Clq did not restore activity when added to heated serum, nor was it mitogenic when tested in basal medium without serum. The addition of purified Clq to fresh serum inhibited the enhancement of DNA synthesis, and at Clq concentrations of 4γ/ml and greater, the fresh serum effects were abrogated. Thus, it appears that binding of the assembled C1 complex to the fibroblast surface was required for FHS-mediated enhancement of fibroblast proliferation, with Clq subcomponent serving as the recognition site. The results from several experiments indicated that antibody was not required for the complement-dependent fibroblast activation. FHS was not cytotoxic, and autologous serum was as effective as allogeneic sera. A 20-fold molar excess of Fab' from pooled human IgG did not alter the FHS effects. FHS from which IgG was more than 99% depleted was still effective. These results suggested an antibody-independent role for complement in the activation of a subpopulation of human diploid fibroblasts.  相似文献   

4.
The regulation of the O6-methylguanine methyltransferase was examined during cell proliferation in hypermutable Bloom's syndrome fibroblasts and normal human skin fibroblasts. During synchronous growth following serum stimulation normal human cells enhanced methyltransferase activity 2.4-fold in the absence of exogenous damage as a normal regulatory event during the cell cycle. Methyltransferase activity was increased prior to the induction of DNA replication and of DNA polymerase and was diminished when each replicative activity was maximal. In contrast, although methyltransferase levels in quiescent cells are equivalent, hypermutable Bloom's syndrome cells did not increase methyltransferase at any interval in the cell cycle.  相似文献   

5.
The effect of retinoic acid on human fibroblasts was studied in a cell culture model of chronologic aging and photoaging. During early exponential phase, all trans-retinoic acid significantly stimulated growth rate of adult arm-derived dermal fibroblasts but not of newborn or adult foreskin-derived fibroblasts. Retinoic acid also significantly reduced saturation density in most young adult arm-derived lines and all 24 lines derived from old adult arm and foreskin. However, four of ten young adult outer arm (relatively sun-exposed) and one of ten young adult inner arm (relatively sun-protected) fibroblasts lines increased their saturation density in response to retinoic acid. These data suggest that prior sun exposure and/or donor age may influence cellular responsiveness to retinoic acid. Neither the stimulatory nor the inhibitory effect of retinoic acid could be attributed to cell density, to breakdown of retinoic acid in culture, to nutrient depletion or to serum dependency. However, stationary phase fibroblasts from all sites (foreskin, inner and outer arm) showed an increase in filopodia and in intracellular actin after treatment with retinoic acid that was roughly proportional to the degree of growth inhibition, irrespective of donor age. We suggest that retinoic acid induces premature density dependent growth inhibition at least in part by increasing filopodia-mediated cell contact that is in turn directly related to an increase in fibrillar actin.  相似文献   

6.
The effects of serum low-density lipoproteins (LDL) were studied in cultures of human skin fibroblasts grown in medium supplemented with human serum deficient in lipoproteins and in platelet factor. The LDL led to a temporary increase in the rate of cell replication, to increases in the cell content of protein and cholesterol, to an increase in average cell size, and to an increased secretion of glycosaminoglycans. The increases in cholesterol and protein were proportional to the increase in cell size, suggesting that the additional protein and cholesterol were of a structural, rather than a storage, nature. The increase in cell protein during the first few days of exposure to LDL was due to a decrease in the rate of protein degradation. Ultrafiltration of the serum to remove substances of molecular weight less than 30,000 did not reduce the basal rate of cell proliferation but did prevent the stimulation of proliferation by LDL; it did not alter the effect of LDL on cell protein and cholesterol, indicating that the latter responses are independent of the mitogenic action. The response of cells from diabetic donors did not differ from that of normal cells.  相似文献   

7.
The roles of ornithine decarboxylase (ODC, EC 4.1.1.17) and polyamines in cellular aging were investigated by examining serum-induced changes of these parameters in quiescent IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL) and in human progeria fibroblasts. Serum stimulation caused increases of ODC and DNA synthesis in IMR-90 human diploid fibroblasts, with maximal values occurring, respectively, 10 hr and 22 hr after serum stimulation. Both serum-induced ODC activity and DNA synthesis in IMR-90 cells were found to be inversely related to their PDL. Maximal ODC activity and DNA synthesis in young cells (PDL = approximately 18-22) were, respectively, five-fold and six-fold greater than that in old cells (PDL = approximately 50-55), which in turn were comparable or slightly higher than that in progeria fibroblasts. Polyamine contents (putrescine, spermidine, and spermine) in quiescent IMR-90 cells did not show significant PDL-dependency. The putrescine and spermine contents in quiescent progeria cells were comparable to those in quiescent IMR-90 cells. The spermidine content in quiescent progeria cells, however, was extremely low, less than half of that in quiescent IMR-90 cells. Serum stimulation caused a marked increase in putrescine content in young cells but not in old cells or in progeria cells. The spermidine and the spermine content in IMR-90 cells, either young or old, and in progeria cells did not change significantly after serum stimulation. Our study indicated that aging of IMR-90 human diploid fibroblasts was accompanied by specific changes of polyamine metabolism, namely, the serum-induced ODC activity and putrescine accumulation. These changes were also observed in progeria fibroblasts derived from patients with Hutchinson-Gilford syndrome.  相似文献   

8.
Fibroblasts derived from the papillary and reticular dermis of human skin and human keratinocytes show differences in their abilities to contract floating three-dimensional gels constructed from type I collagen. Reticular fibroblasts produce greater gel contraction than papillary fibroblasts. When equal numbers of papillary and reticular fibroblasts are mixed in the gels, papillary fibroblasts consistently inhibit gel contraction by reticular fibroblasts indicating interaction between these cell types in the contraction process. Surprisingly, keratinocytes alone produce greater gel contraction than that produced by either fibroblast type. Cooperativity in the gel contraction process is observed when fibroblasts are incorporated into the collagen matrix and keratinocytes are seeded onto the gel surface. Keratinocytes and dermal fibroblasts adhere to the collagen fibril to induce gel contraction by different mechanisms. Fibroblast contraction of collagen gels does not require fibronectin but is a serum-dependent reaction. In contrast, keratinocyte contraction of collagen gels occurs in a serum-free environment. Polyclonal, affinity-purified antibodies to human plasma fibronectin at high concentrations do not inhibit gel contraction by keratinocytes, making unlikely the possibility that fibronectin synthesized by the keratinocyte is a significant factor in the gel contraction process. We are currently examining the possibilities either that keratinocytes are synthesizing other adhesion proteins or that receptors on the cell surface can interact directly with the collagen fiber.  相似文献   

9.
Unlike various model organisms, cellular responses to stress have not been related to human longevity. We investigated cellular responses to stress in skin fibroblasts that were isolated from young and very old subjects, and from offspring of nonagenarian siblings and their partners, representatives of the general population. Fibroblasts were exposed to rotenone and hyperglycemia and assessed for senescence‐associated β‐galactosidase (SA‐β‐gal) activity by flow cytometry. Apoptosis/cell death was measured with the Annexin‐V/PI assay and cell‐cycle analysis (Sub‐G1 content) and growth potential was determined by the colony formation assay. Compared with fibroblasts from young subjects, baseline SA‐β‐gal activity was higher in fibroblasts from old subjects (P = 0.004) as were stress‐induced increases (rotenone: P < 0.001, hyperglycemia: P = 0.027). For measures of apoptosis/cell death, fibroblasts from old subjects showed higher baseline levels (Annexin V+/PI+ cells: P = 0.040, Sub‐G1: P = 0.014) and lower stress‐induced increases (Sub‐G1: P = 0.018) than fibroblasts from young subjects. Numbers and total size of colonies under nonstressed conditions were higher for fibroblasts from young subjects (P = 0.017 and 0.006, respectively). Baseline levels of SA‐β‐gal activity and apoptosis/cell death were not different between fibroblasts from offspring and partner. Stress‐induced increases were lower for SA‐β‐gal activity (rotenone: P = 0.064, hyperglycemia: P < 0.001) and higher for apoptosis/cell death (Annexin V+/PI? cells: P = 0.041, Annexin V+/PI+ cells: P = 0.008). Numbers and total size of colonies under nonstressed conditions were higher for fibroblasts from offspring (P = 0.001 and 0.024, respectively) whereas rotenone‐induced decreases were lower (P = 0.008 and 0.004, respectively). These data provide strong support for the hypothesis that in vitro cellular responses to stress reflect the propensity for human longevity.  相似文献   

10.
11.
The culture of adult human skin fibroblasts on reconstituted bovine type 1 fibrillar collagen gels, ranging in concentration from 2.5-35.0 mg/ml, results in a reduction in proliferation rate by 40%-60% as measured by (3H) thymidine incorporation. The suppressive effect was noted when cells were cultured in both human and bovine serum. Drying the gels into thin films abolishes the suppressive effect of the fibrillar collagen on cell proliferation. Cell attachment studies showed that differences in the proliferation rate of cells on the various substrata were not simply due to differences in initial attachment. Studies with purified platelet-derived growth factor (PDGF) demonstrated that the reduced responsiveness of cells to this factor, when cultured on collagen gels as compared to plastic, was largely responsible for the reduced proliferative activity of the cells when cultured in the presence of serum. The reduced proliferative activity of fibroblasts in response to PDGF, when cultured on collagen gels, was confirmed by total DNA determination. It was shown that the reduced responsiveness of cells to PDGF was not simply because the factor bound to the fibrillar collagen gel or was inaccessible to the cells. The data indicate that the reduced proliferation rate of fibroblasts cultured on collagen gels is a direct result of the influence of the extracellular matrix on the cells' ability to respond to a soluble mitogenic mediator.  相似文献   

12.
The objectives of this study were to establish a growth factor response profile for adult human articular chondrocytes, to determine whether this is unique for chondrocytes or influenced by the differentiation status of the cells, and to characterize growth factor interactions. It is shown that transforming growth factor-β (TGF-β) is the most potent mitogen among a variety of factors tested. All three isoforms of TGF-β caused similar dose-dependent increases in chondrocyte proliferation. Other members of the TGF-β family, including bone morphogenetic protein 2B (BMP2B), activin, and inhibin, did not detectably increase chondrocyte proliferation. Platelet-derived growth factor-AA (PDGF-AA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1) also stimulated proliferation but were less effective than TGF-β. In contrast to findings with other cell types, the effects of TGF-β on chondrocyte proliferation were not dependent on the endogenous production of PDGF. The cytokines Interleukin 1 (IL-1) and tumor necrosis factor-α (TNF-α) gave no stimulation, but IL-1 inhibited chondrocyte proliferation induced by TGF-β or serum. This response profile was characteristic for primary chondrocytes from human adults and distinct from subcultured (dedifferentiated) chondrocytes or skin fibroblasts. The latter preferentially responded to PDGF, and IL-1 caused greater increases in proliferation than TGF-β. In summary, these results describe growth factor responses that are characteristic for chondrocytes and provide a basis for the analysis of changes in chondrocyte growth proliferation that occur in aging and tissue injury. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Stimulation of fibroblast proliferation by thrombospondin   总被引:8,自引:0,他引:8  
Thrombospondin purified from human platelets was examined for its ability to promote proliferation of human dermal fibroblasts. The results show that thrombospondin could stimulate the incorporation of [3H]thymidine by quiescent fibroblasts in a dose-dependent manner without stimulating protein or collagen synthesis. The effect was observed even in the total absence of serum, although the degree of stimulation was substantially lower than that in the presence of 0.4% fetal calf serum, but higher than that in the presence of 4% serum. The effect was specific and not due to contaminants as demonstrated by the ability of antibodies to thrombospondin to specifically inhibit this stimulation. Three monoclonal antibodies directed at different epitopes in the thrombospondin molecule were equally effective in inhibiting this effect. This stimulation of fibroblast proliferation by thrombospondin suggests a potential role for this matrix protein in the mesenchymal cell response in tissue injury and repair.  相似文献   

14.
In order to gain insight into the biological significance of a collagenase inhibitor secreted by human skin fibroblasts, we examined various human connective tissues and body fluids for such a protein. The inhibitors found in these tissues were compared immunologically to skin fibroblast inhibitor by Ouchterlony analysis and by the development of a highly specific enzyme-linked immunosorbent assay (ELISA). Using this ELISA, cell cultures of human skin fibroblasts, corneal fibroblasts, gingival fibroblasts, and adult and fetal lung fibroblasts secreted similar amounts of immunoreactive inhibitor protein. Each culture medium displayed a reaction of immunologic identity with skin fibroblast inhibitor when examined in Ouchterlony gel diffusion. In testing for functional inhibitory activity, the same 1:1 stoichiometry of collagenase inhibition was observed in each culture medium that characterizes the human skin inhibitor. Other mesodermally derived human cell types, including human fetal osteoblasts, uterine smooth muscle cells, fibrosarcoma cells, and explants of tendon and articular cartilage behaved in the same manner as the fibroblast cultures. Because collagenase inhibitors with biochemical similarities to skin fibroblast inhibitor have been described in serum and in amniotic fluid, we also examined these sources of inhibitory proteins. The data indicate that both serum and amniotic fluid contain collagenase inhibitors which are immunologically and functionally identical with the skin fibroblast inhibitor. The concentration of inhibitor in serum, as measured by ELISA assay, is 1.03 +/- 0.27 micrograms/ml. The results suggest that collagenase inhibitors which are functionally equivalent and immunologically identical with human skin fibroblast collagenase inhibitor are synthesized by many, if not all, fetal and adult mesodermal tissues in the human organism. The inhibitor apparently gains access to certain body fluids such as serum and amniotic fluid. This inhibitor protein may, therefore, function in the regulation of collagen degradation in most human connective tissues.  相似文献   

15.
Earlier I found that a variety of stimuli to proliferation of cultured human fibroblasts caused an increase in the rate of putrescine transport into the cells. This paper reports the effects of cycloheximide on putrescine transport in stationary and growing cultures. Cycloheximide in concentrations that inhibited protein synthesis caused increased putrescine transport in serumstarved and density-inhibited cultures. Similar effects were found with pactamycin, also an inhibitor of protein synthesis. Actinomycin D in concentrations that suppressed messenger RNA (mRNA) synthesis, did not cause increased putrescine transport. When both serum and cycloheximide were added to serum-starved cultures, the increase in putrescine transport was greater than when serum alone was added. However, cycloheximide had an inhibitory effect when added 1–2 h after addition of serum. These results suggest that one or more rapidly metabolizing proteins may be important in the regulation of putrescine transport and initiation of cell growth.  相似文献   

16.
Six diploid human fibroblast strains were grown in confluent monolayers. Holes were scraped in these monolayers and the number of cells proliferating into these “wounds” with time were determined. The migration and mitotic aspects of the proliferation of fibroblasts into these wounds were analyzed separately. Small amounts of undialysed or dialysed serum were essential for cell division but not migration. Saline extracts of skin could not substitute for serum in the medium. Neither zinc nor cupric ion at tolerable concentrations (10?5M) increased the rate of cell proliferation. Normal human fibroblasts did not immediately start to divide from confluency into the “wound” space. Their generation time was about 32–39 hours. Fibroblasts from patients with cystic fibrosis began to divide almost immediately into the “wounded” area. Their generation time was about 48 to 56 hours.  相似文献   

17.
The effects of platelet-derived growth factor (PDGF) on DNA synthesis and proliferation in cultures of arterial smooth muscle cells obtained from young and adult rats, respectively, were measured. Addition of 10-20 ng/ml of PDGF to medium MCDB 104 induced DNA synthesis in quiescent cultures of cells from young animals to a similar extent as 10-20% whole blood serum (WBS). PDGF further stimulated proliferation of the cells in medium MCDB 104, although less markedly than 10% WBS. Antibodies against PDGF partially inhibited the growth response after stimulation with serum. This shows that PDGF is a major growth factor in serum for these cells and that PDGF can promote entrance into and passage through S phase and mitosis independent o plasma factors. Cells from adult animals were also found to respond to PDGF, although a higher concentration (25 ng/ml) was required to obtain a maximum effect. These cells, however, responded better than cells from young animals to stimulation with serum. Further, antibodies against PDGF did not inhibit the growth-stimulatory effect of serum to any appreciable extent. Thus, serum contains growth factors other than PDGF that stimulate preferentiaLly the proliferation of smooth muscle cells from adult animals.  相似文献   

18.
The control of endothelial cell proliferation is important in a variety of processes including wound healing and tumor-induced angiogenesis. We have observed that normal unstimulated human monocytes isolated from the blood can inhibit human endothelial cell proliferation. Monocyte-conditioned medium was fractionated by gel filtration chromatography, yielding a 175-fold enrichment of a growth inhibitory activity, designated monocyte-derived endothelial cell inhibitory factor (MECIF). MECIF was found to be protease sensitive, resistant to acid treatment, and heat labile. When conditioned medium was subjected to HPLC gel filtration, the inhibitory activity was eluted as a single peak with a molecular weight of 50-70 kDa. Several characteristics distinguish MECIF from previously described monocyte/macrophage-derived inhibitory factors. Unlike TGF-beta, MECIF is heat labile and does not induce a mitogenic response in growth-arrested normal rat kidney cells. In addition, polyclonal antibodies specific for TGF-beta or INF-gamma do not inhibit MECIF activity. MECIF preparations show low levels of TNF-alpha, insufficient to promote the observed growth inhibitory effect. MECIF activity on human endothelial cells was found to be dose dependent and reversible. MECIF also appeared to be target cell selective in that it did not significantly alter the growth of human smooth muscle cells or skin fibroblasts. These data suggest that monocyte-derived factors may play a key role in inhibiting endothelial cell proliferation.  相似文献   

19.
In order to analyze changes in metabolism of insulin-like growth factor binding proteins (IGFBPs) related to cell senescence and cell density, we compared human diploid fibroblasts (HDF) in the proliferatively vigorous first half (young cells) and senescent HDF in the last 10% (old cells) of the replicative lifespan after seeding cells over an eighfold range and proliferation to high density. Increasing the seeding cell density of both young and old HDF led to elevated rates of IGFBP-3 secretion, an increasing ratio of the 42/38 kDa species of IGFBP-3, and degradation of all species of IGFBPs derived from both the fetal bovine serum component of the culture medium and from HDF. At a given seeding density old HDF produced more IGFBP-3 and degraded more IGFBPs than young HDF. IGFBP-4 was degraded by a protease that appeared to be different from the protease(s) involved in degradation of the other IGFBPs. Young HDF at all seeding densities contained a cell-associated 29 kDa IGFBP, whereas this protein could not be detected in old cells. Thus, although certain changes in IGFBP metabolism are similar in young HDF seeded at high densities and in old HDF, young and old phenotypes can be distinguished by characteristic qualitative and quantitative changes in IGFBPs derived from fetal bovine serum and from HDF. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America
  •   相似文献   

    20.
    The relationship of cell surface changes to proliferative decline of human diploid fibroblasts was investigated using the concanavalin A-mediated red blood cell adsorption assay. The amount of the red blood cells adsorbed to human diploid fibroblasts via concanavalin A increased continuously from the early phases of cell passage up through cell senescence, while the amount of 3H-concanavalin A binding did not change to a significant extent. The red blood cell adsorption is not a function of cell cycle phase and time spent in culture. Cocultivation of young cells with old cells also did not affect the adsorption capacity of respective cells. Thus, the concanavalin A-mediated red blood cell adsorption can be expected to serve as a new cell surface marker for aging in vitro. Using this marker, it was revealed that transient cell size or 3H-thymidine incorporating capacity di not have a direct relationship with the division age of a cell. Small rapidly dividing cells in old populations resemble large slowly dividing or nondividing cells of the same populations and differ from small rapidly dividing cells in young populations, in terms of cell surface properties.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号