首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effects of light and temperature on cell size and cellular composition (chlorophyll, protein, carbohydrate) of two freshwater cryptophytes were studied with batch cultures. Neither of the species had a constant cell size but the size varied with growth conditions. At each temperature the smallest cells were recorded at the lowest experimental photon flux density. The smallest cells of Cryptomonas 979/67 had an average volume of 232 μm3 and the largest ones 1 020 μm3. In Cryptomonas 979/62 the smallest and largest cells measured 4 306 μm3 and 12 450 μm3. Both species increased their cellular chlorophyll content when PFB dropped below 110–120 μmol m-2 s-1. The highest and lowest chlorophyll contents of 979/67 were 7.45 fg μm-3 and 0.55 fg μm-2 respectively. For 979/62 the corresponding values were 10.23 fg μm-3 and 0.93 fg μm-3. In both species the protein content remained stable at PFDs higher than 110–120 μmol m-2 S-1. The highest content of protein measured in 979/67 was 638 fg μm-3 and the lowest 147 fg μm-3. For 979/62 these values were 1 036 fg μm-3 and 148 fg μm-3 respectively. The carbohydrate results were less clear and no pattern either in response to photon flux density or temperature was obvious. The lowest and highest contents recorded for 979/67 were 62 fg μm-3 and 409 fg μ-3 and for 979162, 36 fg μm-3 and 329 fg μm-3  相似文献   

2.
Ecology of cryptophytes coexisting near a freshwater chemocline   总被引:4,自引:0,他引:4  
1. A deep chlorophyll maximum dominated by Cryptomonas phaseolus , Cryptomonas undulata and often also by Cryptomonas rostratiformis was observed near the summer chemocline of the dimictic, meso-eutrophic lake Schlachtensee from 1990 to 1996.
2. The cryptophyte populations occupied a stratified water column of about 2 m thickness just below the oxycline. They were never observed in the summer epilimnion. In their habitat, oxygen concentration was always lower than 1 mg L–1 and light was growth-limiting, whereas nitrogen and phosphorus were available at high concentrations.
3. A very large portion of the populations stayed in the anaerobic, sulphide-containing water layer. Below the chemocline, purple and green sulphur bacteria coexisted.
4. The cryptophyte populations were maintained by in situ growth due to low-light adapted photosynthesis and not due to phagotrophy.
5. Short-term changes in the light climate near the chemocline could explain the coexistence of different cryptophyte species.  相似文献   

3.
Abstract. A field study was conducted to determine the relationship of solar-excited chlorophyll a fluorescence to net CO2 assimilation rate in attached leaves. The Fraunhofer line-depth principle was used to measure fluorescence at 656.3 nm wavelength while leaves remained exposed to full sunlight and normal atmospheric pressures of CO2 and O2. Fluorescence induction kinetics were observed when leaves were exposed to sunlight after 10 min in darkness. Subsequently, fluorescence varied inversely with assimilation rate. In the C4 Zea mays , fluorescence decreased from 2.5 to 0.8 mW m-2 nm-1 as CO2 assimilation rate increased from 1 to 8 μmol m-2 s-1 (r2= 0.520). In the C3 Liquidambar styraciflua and Pinus taeda , fluorescence decreased from 6 to 2 mW m-2 nm-1 as assimilation rate increased from 2 to 5 or 0 to 2 μmol m-2 s-1 (r2= 0.44 and 0.45. respectively). The Fraunhofer line-depth principle enables the simultaneous measurement of solar-excited fluorescence and CO2 assimilation rate in individual leaves, but also at larger scales. Thus, it may contribute significantly to field studies of the relationship of fluorescence to photosynthesis.  相似文献   

4.
The marine alga Heterosigma carterae Hulburt (Raphidophyta) was grown in N-limiting batch cultures using either nitrate or ammonium as the N source, at photon flux densities (PFDs) of 50, 200, and 350 μmol·m-2·s-1 in a 12:12 h LD cycle. Carbon content could be estimated from biovolume (μg C = 0.278 × nL; R = 0.98) but not reliably from pigment content. During exponential growth, ammonium-grown cells (in comparison with nitrate-grown cells at the same PFD) attained higher growth rates by at least 20%, contained more N, and had a lower C:N ratio, higher concentrations of intracellular free amino acids, and higher ratios of glutamine: glutamate (Gln: Glu) and asparagine: aspartate (Asn:Asp). Growth was nearly light-saturated on ammonium at 200 μmol·m-2·s-1 (cell-specific growth rate of 1.2 d-1) but probably not saturated in nitrate-grown cells at 350 μmol·m-2·s-1. PFD did not affect Gln: Glu or Asn: Asp for a given N source. These results indicate that the nitrate-growing cells were more N-stressed than those using ammonium (which in contrast were relatively C-stressed) and that this organism would show an enhanced competitive advantage against other species when supplied with a transient supply of ammonium rather than nitrate .  相似文献   

5.
Abstract: Diurnal courses of gas exchange were measured throughout one year in fully expanded current-year leaves in the uppermost canopy (sun leaves, 18 m above ground) and in the lower canopy (shade leaves, 12 m above ground) of Myrica faya Ait., a dominant component of the Canarian laurel forest in Tenerife, Canary Islands, Spain.
M. faya showed large differences between sun and shade leaves in gas exchange characteristics (about 50 % of maximum carbon assimilation rate (Amax) reduction in shade leaves, but this reduction can be higher on specific days) that were modulated by strong light attenuation and high leaf area index (LAI) of the stand. This species presented low Amax, about 10 μmol m-2 s-1, high maximum transpiration (E, 8 mmol m-2 s-1) and stomatal conductance (gs, 750 mmol m-2 s-1) and very low instantaneous water use efficiency (WUE, mean maximum 1.1 mmol mol-1) and A/gs (mean maximum 23.5 μmol mol-1). M. faya responded to high air vapour pressure deficit (VPD), decreasing its gs but maintaining relatively high values of A and E during the studied period. Stomatal response to VPD showed a higher sensitivity than its congeners, M. cerifera, and Laurus azorica, tree species co-occurring in the Canarian laurel forest. In general, all these gas exchange characteristics lead us to consider this species more similar to subtropical plants of humid regions than to species of the Mediterranean region.  相似文献   

6.
Under full–spectrum white light, feeding success of haddock Melanogrammus aeglefinus first feeding larvae, as measured both by proportion of larvae feeding and mean prey consumed, peaked at 1·7-18 μmol s-1 m-2. Feeding was significantly reduced at lower and higher intensities. A similar result was observed for larvae feeding under blue (470 nm) light, with significantly greater feeding success at intermediate light intensity (1·8 μmol s-1 m-2). When different light qualities were compared, larvae had significantly greater feeding success when exposed to blue (470 nm) light than either full-spectrum white or green (530 nm) light. Haddock larvae were capable of prey capture under all light treatments tested, indicating a necessary degree of adaptive flexibility in feeding response. The results are consistent with predisposition of haddock larvae to optimal feeding in a visual environment comparable with open ocean nursery grounds. Information on the impact of light on haddock first feeding can be incorporated into models of larval growth, survival, year-class strength and recruitment, and assist in developing husbandry protocols to maximize larval survival in aquaculture.  相似文献   

7.
The effects of fluridone on guard cell morphology, chloroplast ultrastructure and accumulation of drought stress-induced abscisic acid (ABA) were studied in Vicia faba L. plants grown under different light conditions. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. The appearance of defective and undeveloped stomata, and chloroplasts with a destroyed thylakoid membrane system was found in fluridone-treated plants grown at a photosynthetic photon flux (PPF) of 600 μmol m-2 s-1. Plants grown at a PPF of 40 μmol m-2 s-1 had diminished levels of ABA after imposition of dehydration. Fluridone treatment reduced the level of ABA in both unstressed and dehydrated leaves. Accumulation of ABA in the control plants was considerably reduced when they were exposed to dark periods of 24, 48 and 72 h just before imposition of the stress. Twenty-four hours after the dark treatment dehydration of the leaves resulted in a 3-fold decrease in the level of stress-induced ABA, and 72 h after dark treatment the amount of stress-induced ABA approximated the prestressed values. Fluridone-treated plants failed to accumulate ABA under water stress. In addition to functionally active chloroplasts, well-developed and functional stomata are required for drought stress to elicit a rise in ABA.  相似文献   

8.
Abstract. Two nonallelic, nuclear recessive mutants of Arabidopsis thaliana (L.) Heynh. which become chlorotic when grown in an atmosphere enriched to 20000 cm3 CO2 m-3 have been isolated. For one of the mutants, chlorosis begins at the veins and gradually spreads to the interveinal regions. A minimum photon flux density of ca 50 μmol m-2 s-1 is required for this response. For the other mutant, the yellowing is independent of the light intensity and begins at the basal regions of the leaves and spreads to the tips. The injurious effects of CO2 seem to be restricted to photosynthetic tissues, since root elongation and callus growth were not inhibited by a high atmospheric CO2 concentration for either mutant. Neither mutant became chlorotic in a low O2 atmosphere that suppressed photorespiration as effectively as the elevated CO2 does. Thus, the mutations do not impose a requirement for photorespiration. The possibilities that the high CO2-sensitive phenotypes are caused by an effect of CO2 in stomata, on ethylene synthesis, or on mineral uptake are discussed but are considered unlikely.  相似文献   

9.
Abstract: The performance and photosynthetic ecophysiology of three photo-types of Dioscorea zingiberensis were studied. The three types are designated DzTL, DzTM and DzTH, according to their adaptation to low (LL), medium (ML) and high (HL) light intensities, respectively. Under LL (23 - 55 μmol m-2 s-1) and simulated natural light (SNL), DzTM grows well with increased longevity, and green leaves which are unspotted; while its leaves became small, light yellow and short-lived under HL (550 - 850 μmol m-2 s-1). In contrast, under LL the leaves of DzTH were very large, spotted, light yellow and short-lived; while they were small, green and long-lived under HL. Under HL, DzTH had a much higher chlorophyll content than DzTM. Under LL, DzTM and DzTL had a higher Chl content than DzTH. Among the three types, DzTM had the highest peroxidase activity. DzTL had a higher electron transport rate (ETR), maximal quantum yield (MQY) and effective quantum yield (EQY) than DzTH and DzTL under LL, while DzTH had higher ETR, MQY and EQY than the other two types under ML and HL. Therefore, three different photo-types can be characterized according to their adaptation to LL, ML and HL: DzTL, DzTM and DzTH, respectively.  相似文献   

10.
The effect of fruit removal on gas exchange, water relations, chlorophyll and non-structural carbohydrate content of leaves from mature, field-grown plum trees ( Prunus domestica L. cv. Stanley) was determined over 2 consecutive growing seasons. Removal of fruits during stage II of fruit development decreased CO2 assimilation rate within 24 h from 12.6 to 8.5 μmol m-2 s-1 in 1986, and from 12.1 to 10.2 μmol m-2 s-1 in 1987. Depression of net photosynthesis persisted for at least 5 days and was greatest in the early afternoon. Recovery of the CO2 assimilation rate to pretreatment levels coincided in defruited trees with vegetative growth that was more than 5-fold that of fruiting trees in the first 6 weeks after fruit removal in 1986. Estimated photorespiration was similar in both fruiting and defruited trees. The stomatal contribution to the decrease of CO2 assimilation rate, calculated from assimilation/intercellular CO2 curves, ranged from 31 to 46%. Defruiting did not affect leaf water potential, but decreased leaf osmotic potential. Leaf levels of chlorophyll, fructose, glucose, sorbitol and sucrose were not affected by defruiting, whereas starch content increased up to 51% in leaves of defruited trees within 24 h after fruit removal. However, because of the small starch pool present in plum leaves (<1.9% dry weight) it is unlikely that starch accumulation was responsible for the observed decline in CO2 assimilation rate after fruit removal. The decrease of CO2 assimilation rate is discussed in relation to the hypothesis of assimilate demand regulating photosynthesis through a feedback mechanism.  相似文献   

11.
Larval grayling were found along the shoreline at velocities <20 cm s-1 depths <40 cm, shear stress <2 dyn m-2 and over sand and silt. Juveniles were found in the river channel at currents of 20-40 cm s-1 depths of 40-60 cm and shear stresses of 2-4 dyn m-2, over gravel and pebbles.  相似文献   

12.
A quick-freezing technique for freeze fracturing was used to determine periplast plate types in 20 cryptomonads. With this technique cells are frozen so rapidly that major artifacts are eliminated. We propose that periplast plates are attached to the cell membrane by intramembrane particles (IMP's), consequently plate shapes are outlined by IMP distribution in fractured membranes. Round to oval, sometimes slightly angular, plates occur in Cryptomonas ovata, Cryptomonas tetrapyrenoidosa, Cryptomonas parapyrenoidifera, Cryptomonas obovata, Cryptomonas erosa and two unidentified species of Cryptomonas; large rectangular plates occur in Chroomonas pochmannii, Chroomonas coerulea and Hemiselmis sp.; small rectangular plates were found in Cryptomonas sp. (Strain SDB); square to slightly rounded plates occur in Cryptomonas chrysoidea and a single continuous plate or sheet, perforated by ejectisome pores, was observed in Cryptomonas caudata, Cryptomonas rostratiformis, Cryptomonas marssonii, Cryptomonas platyuris, Cryptomonas curvata, Cryptomonas ozolini, Chilomonas paramecium and Rhodomonas sp. Oval and square plates are described for the first time in Cryptomonas. Plate IMP's may be morphologically modified in size and shape, depending upon their location in relation to the plate, the plate ridges, and ejectisome chambers. Conformational changes in plate shapes, to form hexagons or polygons, may be induced when cells are subjected to fixation, desiccation, cryoprotectants or centrifugation.  相似文献   

13.
Abstract. A behavioural test was used to determine the light sensitivity of the nocturnal mosquito Anopheles gambiae Giles s.s. to low intensities of 'white' light (tungsten filament), 'red' light (white light filtered by a darkroom safelight filter) and 'infra-red' light) of two types (white light filtered by a λ>700 nm filter, and light-emitting diodes with λ>900 nm). Mosquitoes were placed in a 20 cm diameter flight-tunnel and their 'optomotor' response to a pattern of stripes moving across their visual field (at 14.5 cm s-1) was recorded with infra-red-sensitive video. In free-flight, with ample light, the mosquitoes controlled their flight speed and direction in relation to the stripe movement, so that the stripes always appeared to move across their visual field from front to back. They did this by flying either with the moving stripes fast enough to overtake them (19.5 ± 0.7 cm s-1), or against them more slowly (10.3 ± 0.7 cm s-1)- The net ground speed of the mosquitoes was thus c. 4–5 cm s-1. This response was significant down to 10-5 W m-2 in 'white' light, and 10-3 W m-2 in 'red' light. At light intensities below threshold and in infra-red light, however, they appeared to fly at random with respect to the stripe movement. The assumption commonly made, that mosquitoes do not 'see' in red light, may thus have to be revised.  相似文献   

14.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

15.
The chlorophyll content and partitioning of assimilate of bean ( Phaseolus vulgaris L. 'Pinto') plants were determined 6 days after treatment of the second internode (I2 with 5 μg of brassinosteroid (BR), a growth-promoting steroidal lactone. Plants were grown for 6 days under equal levels (90 μmol s-1 m-2) of photosynthetic photon flux density (PPFD) provided by cool white fluorescent (CWF) or incandescent (INC) lamps and equal levels of far-red (28 W m-2, 700–800 nm) radiation provided by the same INC or far-red (FR) fluorescent lamps. Brassinosteroid treatment had no appreciable effect on total biomass production but caused a decrease of 15–20% dry matter distribution in the upper portion of the shoot, a small (4%) but constant increase in dry matter in l2 and a large (11–16%) increase in dry matter in the lower portion of the shoot (especially I1). Treatment with BR increased assimilate accumulation in the primary leaves, especially under INC and FR lamps, and reduced dry matter in the trifoliate leaves. BR also caused a 16–21% reduction in total leaf area and even a greater reduction in area of the trifoliate leaves, but significantly increased specific leaf weight of the primary leaves and the first trifoliate leaf and the amount of dry matter in the lateral shoots under all radiation sources. In comparison to controls, BR treatment increased dry matter accumulation in the treated internode 3.3x under CWF and 1.6x under INC or FR. BR treatment also increased chlorophyll content in the primary leaves under all radiation sources and in the trifoliate leaves under CWF and INC lamps. These findings suggest a possible mobilization role of BR and establish the importance of adequate PPFD (and photosynthate) for maximum swelling and splitting response to brassinosteroid.  相似文献   

16.
Abstract: The influence of prolonged water limitation on leaf gas exchange, isoprene emission, isoprene synthase activities and intercellular isoprene concentrations was investigated under standard conditions (30 °C leaf temperature and 1000 μmol photons m-2 s-1 PPFD) in greenhouse experiments with five-year-old pubescent oak ( Quercus pubescens Willd.) and four-year-old pedunculate oak ( Quercus robur L.) saplings. Net assimilation rates proved to be highly sensitive to moderate drought in both oak species, and were virtually zero at water potentials (Ψpd) below - 1.3 MPa in Q. robur and below - 2.5 MPa in Q. pubescens . The response of stomatal conductance to water stress was slightly less distinct. Isoprene emission was much more resistant to drought and declined significantly only at Ψpd below - 2 MPa in Q. robur and below - 3.5 MPa in Q. pubescens . Even during the most severe water stress, isoprene emission of drought-stressed saplings was still approximately one-third of the control in Q. robur and one-fifth in Q. pubescens . Isoprene synthase activities were virtually unaffected by drought stress. Re-watering led to partial recovery of leaf gas exchange and isoprene emission. Intercellular isoprene concentrations were remarkably enhanced in water-limited saplings of both oak species during the first half of the respective drought periods with maximum mean values up to ca. 16 μl l-1 isoprene for Q. pubescens and ca. 11 μl l-1 isoprene for pedunculate oak, supporting the hypothesis that isoprene serves as a short-term thermoprotective agent in isoprene-emitting plant species.  相似文献   

17.
Summary A comparative action spectroscopical study was made on phototaxis in two genera of cryptomonads (cryptophyte flagellate algae), namely,Cryptomonas (rostratiformis) andChroomonas (nordstedtii andcoeruled). The two genera differ in their characteristic phycobilin pigmentation and, among three species, onlyChroomonas coerulea possesses an eyespot. The two species with no eyespot,Cryptomonas rostratiformis andChroomonas nordstedtii, exhibited positive phototaxis, showing very similar action spectra characterized by a broad band in the region from 450 nm to 650 nm, with an action maximum at about 560 nm; these features are essentially the same as those observed previously forCryptomonas strain CR-1. InCryptomonas rostratiformis, a small peak was also found at 280 nm in the UV-B/C region.Chroomonas coerulea, with eyespot, did not exhibit distinct positive phototaxis in a wide spectral region at any given, even very low, light intensity, but exhibited negative phototaxis of spectral sensitivity maximal at 400–450 nm. These results indicate that the positive phototaxis ofCryptomonas (rostratiformis and CR-1) andChroomonas nordstedtii is mediated by the same, yet unidentified photoreceptor(s).Chroomonas nordstedtii, possessing no phycoerythrin absorbing at 545 nm, also exhibits positive phototaxis at ca. 560 nm, and this result disfavors the so far proposed possibility that the positive phototaxis of the cryptophytes may be mediated by phycobilin pigments. On the other hand, the spectral characteristics of negative phototaxis ofChroomonas coerulea can possibly be ascribed to the presence of an eyespot.  相似文献   

18.
Abstract: In Mesembryanthemum crystallinum plants, treated for 9 days with 0.4 M NaCl at low light intensities (80 - 90 or 95 - 100 μE m-2 s-1; λ = 400 - 700 nm), no day/night malate level differences (Δmalate) were detected. At high light (385 - 400 μE m-2 s-1) strong stimulation of PEPC activity, accompanied by a Δmalate of 11.3 mM, demonstrated the presence of CAM metabolism. This indicates that, to evolve day/night differences in malate concentration, high light is required. Salt treatment at low light induces and increases the activity of NAD- and NADP-malic enzymes by as much as 3.7- and 3.9-fold, while at high light these values reach 6.4- and 17.7-fold, respectively. The induction of activity of both malic enzymes and PEPC (phospo enol pyruvate carboxylase) take place before Δmalate is detectable. An increase in SOD (superoxide dismutase) was observed in plants cultivated at high light in both control and salt-treated plants. However, in salt-treated plants this effect was more pronounced. Carboxylating and decarboxylating enzymes seem to be induced by a combination of different signals, i.e., salt and light intensity. Plants performing CAM, after the decrease of activity of both the decarboxylating enzymes at the beginning of the light period, showed an increase in these enzymes in darkness when the malate pool reaches higher levels. In CAM plants the activity of fumarase (Krebs cycle) is much lower than that in C3 plants. The role of mitochondria in CAM plants is discussed.  相似文献   

19.
The growth response of bean ( Phaseolus vulgaris L. 'Pinto') plants treated with 5 μg of brassinosteroid (BR) in the bean second-internode assay was measured in a controlled environment under 3 radiation sources: cool white fluorescent (CWF), far-red (FR) fluorescent and incandescent (INC) lamps. Growth comparisons were made under equal levels (90 μmol s-1 m-2) of photosynthetic photon flux density provided by CWF or INC lamps and equal levels of far-red (28 W m-2, 700–800 nm) radiation provided by the same INC or FR lamps. Treatment of the second internode with BR produced a sequential increase in elongation, curvature, and swelling under normal bioassay conditions (CWF lamps), as observed previously with brassins. In addition, BR induced marked splitting of the treated internode provided that ample photosynthate was available. Spectral quality had a differential effect on internodal elongation. Under CWF lamps, internodes, 6 days after BR-treatment, were 2–3 times longer than those of controls; under INC or FR lamps they were 30–60% shorter than those of controls. In all cases, BR-treatment greatly stimulated accumulation of photosynthate in the treated internode, as indicated by fresh and dry weights and stem diameter measurements. This suggests a possible mobilization role for BR in the intact plant. Brassinosteroid also partially overcame the natural inhibitory effects of CWF radiation on stem elongation.  相似文献   

20.
When willow leaves were transferred from 270 to 650 μmol m-2 s-1 photosynthetic photon flux density (PPFD), partial photoinhibition developed over the next hours. This was manifested as roughly parallel inhibitions of the ratio of variable over maximal chlorophyll fluorescence (Fv/FM), and of the maximal quantum yield and the capacity of photosynthesis. This occurred even though photosynthesis was operating well below its capacity and only about one fourth of the reaction centres of photosystem (PS) II were in the closed state. When the air temperature was lowered from 25 to 15°C (18°C leaf temperature) photoinhibition was markedly accelerated. This temperature effect is suggested to be mediated largely by a decrease in the rate of energy dissipation through photosynthesis and indicated by a 50% increase in the number of closed PSII reaction centres. The pool size of the carotcnoid zeaxanthin and the extent of inhibition of the Fv/FM ratio were positively correlated during the treatment. However, the relaxation following imposition of darkness was much faster for zeaxanthin than for the Fv/FM ratio, ruling out the possibility of a direct causal relationship. The energy distribution between PSII and PSI was unaltered upon photoinhibition. However, the functioning of the PSII reaction centres was altered, as indicated by a rise in the minimal fluorescence, Fa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号