首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of beryllium bonds formed between BeX2 (X is H, F and Cl) and some Lewis bases have been investigated. The distribution of the Laplacian of electron density shows that there is a region of charge depletion around the Be atom, which, according to Laplacian complementary principal, can interact with a region of charge concentration of an atom in the base and form a beryllium bond. The molecular graphs of the investigated complexes indicate that beryllium in BeH2 and BeF2 can form “beryllium bonds” with O, N and P atoms but not with halogens. In addition, eight criteria based on QTAIM properties, including the values of electron density and its Laplacian at the BCP, penetration of beryllium and acceptor atom, charge, energy, volume and first atomic moment of beryllium atom, have been considered and compared with the corresponding ones in conventional hydrogen bonds. These bonds share many common features with very strong hydrogen bonds, however,some differences have also been observed.  相似文献   

2.
Aluminum fluoride and beryllium fluoride complexes have previously been shown to bind tightly to F-ADP-actin and GDP-microtubules in competition with Pi and to mimic the XDP-Pi transient state of the polymerization. The structure of the bound complexes is investigated here in further detail. Using a fluoride ion-specific electrode, the number of fluoride atoms per aluminum or beryllium atom in the bound complex could be determined. The results indicate that AIF-4 and either BeF2(OH)-.H2O or BeF3-.H2O are the tightly bound species in both F-actin and microtubules. The dependences of the binding on pF and pH are consistent with this conclusion. The possible geometries of aluminum and beryllium fluorides in the gamma-phosphate subsite of the nucleotide are discussed in correlation with the catalytic mechanism of nucleotide hydrolysis.  相似文献   

3.
A series of penta- and heteropentadienyl [CH2CHCHCHXBe]+, (X?=?CH2, O, NH, S) complexes has been theoretically studied. All calculated complexes show beryllium atoms with two, three, and five coordination numbers. The density functional theory (DFT) was used to determine the electron and structural behavior of those beryllium complexes. The nature of the ligands plays an important role in the form of binding to the beryllium atom. Beryllium structures 14 are able to coordinate only one hydrogen molecule. A molecular orbital analysis for all complexes was performed in order to know more about the nature of their bonding scheme.  相似文献   

4.
In an effort to understand the molecular basis of chronic beryllium disease (CBD), a study of the chemical relationship between beryllium, antigen, and the major histocompatibility complex II, HLA-DP, was undertaken. A homology model of the HLA-DP protein was developed. An analysis of the sequences of HLA-DPB1 and HLA-DPA1 alleles most common among CBD patients revealed several carboxylate rich regions in the peptide-binding cleft. These regions contain many hard Lewis base sites that may provide bonding opportunities for beryllium, a hard Lewis acid. Quantum chemistry calculations and structural database results support the presence of beryllium clusters, bridged by carboxylate, hydroxo, and/or oxo ligands, in the HLA-DP binding cleft. These results strongly suggest that beryllium clusters are an integral part of the antigen, and may even act solely as antigen. This work provides an initial model for thinking about beryllium interactions with proteins relevant to CBD and other metal-induced diseases.  相似文献   

5.
The collective electronic excitations in thin Ag films deposited onto the Ni(111) surface were studied by high-resolution electron energy loss spectroscopy. A broad loss peak at 7.7 eV was assigned to the Ag multipole plasmon, in excellent agreement with calculations based on s-d polarization model. Ag multipole plasmon was excited only at grazing incidence. Furthermore, a strong dependence on the impinging energy exists. Multipole plasmon could be measured only for a very strict range of primary electron beam energies and it was excited by electrons scattered at a reflection plane located just underneath the jellium edge. Such mode was found to be dramatically more sensible to the state of the surface with respect to ordinary surface plasmon. Moreover, we report experimental evidence of interference effects in surface plasmon excitation.  相似文献   

6.
The electronic structure of the two most stable isomers of squaric acid and their complexes with BeH2 were investigated at the B3LYP/6-311?+?G(3df,2p)// B3LYP/6-31?+?G(d,p) level of theory. Squaric acid forms rather strong beryllium bonds with BeH2, with binding energies of the order of 60 kJ?mol?1. The preferential sites for BeH2 attachment are the carbonyl oxygen atoms, but the global minima of the potential energy surfaces of both EZ and ZZ isomers are extra-stabilized through the formation of a BeH···HO dihydrogen bond. More importantly, analysis of the electron density of these complexes shows the existence of significant cooperative effects between the beryllium bond and the dihydrogen bond, with both becoming significantly reinforced. The charge transfer involved in the formation of the beryllium bond induces a significant electron density redistribution within the squaric acid subunit, affecting not only the carbonyl group interacting with the BeH2 moiety but significantly increasing the electron delocalization within the four membered ring. Accordingly the intrinsic properties of squaric acid become perturbed, as reflected in its ability to self-associate.
Figure
The ability of squaric acid to self-associate is significantly enhanced when this molecule forms beryllium bonds with BeH2  相似文献   

7.
Important properties of globular proteins, such as the stability of its folded state, depend sensitively on interactions with solvent molecules. Existing methods for estimating these interactions, such as the geometrical surface model, are either physically misleading or too time consuming to be applied routinely in energy calculations. As an alternative, we derive here a simple model for the interactions between protein atoms and solvent atoms in the first hydration layer, the solvent contact model, based on the conservation of the total number of atomic contacts, a consequence of the excluded-volume effect. The model has the conceptual advantage that protein-protein contacts and protein-solvent contacts are treated in the same language and the technical advantage that the solvent term becomes a particularly simple function of interatomic distances. The model allows rapid calculation of any physical property that depends only on the number and type of protein-solvent nearest-neighbor contacts. We propose use of the method in the calculation of protein solvation energies, conformational energy calculations, and molecular dynamics simulations.  相似文献   

8.
微生物胞外呼吸是厌氧环境中控制性能量代谢方式,直接驱动着C、N、S、Fe等关键元素的生物地球化学循环。微生物纳米导线(Microbial nanowires)的发现,被认为是微生物胞外呼吸的里程碑事件,推动了电微生物学(Electromicrobiology)的形成与发展。微生物纳米导线是一类由微生物合成的,具有导电性的纤维状表面附属结构。通过细菌纳米导线,微生物胞内代谢产生的电子可以长距离输送到胞外受体或其他微生物,改变了电子传递链仅仅局限于细胞胞内的认识,从而大大拓展了微生物-胞外环境互作的范围。微生物纳米导线的良好导电性,赋予了其作为天然纳米材料的广阔应用前景。目前,微生物纳米导线的导电机制、生态功能及其在生物材料、生物能源、生物修复及人体健康多领域的应用,已经成为新兴电微生物学的前沿与热点。然而,微生物纳米导线的生物学、生态学功能尚不清楚,它的电子传递机制仍存在分歧。本文在系统性总结微生物纳米导线性质、功能的基础上,以Geobacter sulfurreducensShewanella oneidensis纳米导线为模型,详细阐述了纳米导线的组成与结构、表征与测量方法、导电理论(类金属导电学说与电子跃迁学说)及其潜在的应用,最后提出了未来微生物纳米导线研究的重点方向、挑战与机遇。  相似文献   

9.
The Ni–Al alloys which exhibit the thermoelastic martensitic phase transformations in the composition range from 60 to 65 atomic percentage (at.%) of Ni are widely used in the high technology applications. In this study, both thermal and pressure-induced phase transformations in Ni-37.5 at.%Al alloy model were investigated by a molecular dynamics (MD) method. Physical interactions between atoms in the alloy system were modelled using the Sutton–Chen version of the embedded atom method based on many-body interactions. The potential parameters for cross interactions between Ni and Al atoms were estimated by optimising the results obtained from the MD simulations, taking into account the experimental data including the crystal lattice properties of the model alloy in high temperature phase.  相似文献   

10.
The paper presents results of numerical simulations of the electron dynamics in the field of the azimuthal and longitudinal waves excited in the channel of a stationary plasma thruster (SPT). The simulations are based on the experimentally determined wave characteristics. The simulation results show that the azimuthal wave displayed as ionization instability enhances electron transport along the thruster channel. It is established that the electron transport rate in the azimuthal wave increases as compared to the rate of diffusion caused by electron scattering from neutral atoms in proportion to the ratio between the times of electron? neutral collisions responsible for ionization and elastic electron scattering, respectively. An expression governing the plasma conductivity is derived with allowance for electron interaction with the azimuthal wave. The Hall parameter, the electron component of the discharge current, and the electron heating power in the thruster channel are calculated for two model SPTs operating with krypton and xenon. The simulation results agree well with the results of experimental studies of these two SPTs.  相似文献   

11.
Abstract

A new modification of the Gibbs ensemble Monte Carlo computer simulation method for fluid phase equilibria is described. The modification is based on a thermodynamic model for the vapor phase, and uses an equation of state to account for the weak interactions between the vapor phase molecules. Reductions in the computational time by 30–40% as compared to the original Gibbs ensemble method are obtained. The algorithm is applied to Lennard-Jones - (12,6) fluids and their mixtures and the results are in good agreement with results obtained from simulations using the full Gibbs ensemble method.  相似文献   

12.
Molecular dynamics (MD) simulations are carried out for model aluminium with 500, 864, 1372 and 2048 atoms interacting with Sutton-Chen version of embedded atom method (SCEAM) based on many body interactions. The systems equilibrated in an FCC structure have, first, been melted and then solidified with specifically selected single cooling rate which forms unstable amorphous state in the system. The local structures of the system have been analysed by bond orientational order parameters to distinguish the simple structures in the systems. The radial distribution functions (RDF) and atomic coordinates have also been analysed for determining the local structural properties. It has been observed that the phase sequences of the systems, except for those of the 2048 atoms, are FCC → Liquid → Amorphous → Mixed Crystal. Types of the crystals in the mixed state depend on the number of the atoms in the system. The final phase of the system with 2048 atoms is amorphous state.  相似文献   

13.
We describe a novel method to calculate the packing interactions in protein structural models. The method calculates the interatomic occluded surface areas for each atom in the protein model. The identification of, and degree of interaction with, neighboring atoms is accomplished by extending surface normal from a dot surface of each atom to the point of intersection with neighboring atoms. The combined occluded and non-occluded surface areas may be normalized for the amino acid composition of the protein providing a single parameter, the normalized protein surface ratio, which is diagnostic for native-like Structures. Individual residues in the model which are in infrequent occluded surface environments may be identified. The method provides a means to explicitly describe packing densities and packing environments of individual atoms in a protein model. Finally, the method allows estimation of the complementarity between any interacting molecules, for example a ligand binding to a receptor.  相似文献   

14.
Quantum chemical calculations were performed to investigate the stability of the ternary complexes BeH2···XMH3···NH3 (X?=?F, Cl, and Br; M?=?C, Si, and Ge) and the corresponding binary complexes at the atomic level. Our results reveal that the stability of the XMH3···BeH2 complexes is mainly due to both a strong beryllium bond and a weak tetrel–hydride interaction, while the XMH3···NH3 complexes are stabilized by a tetrel bond. The beryllium bond with a halogen atom as the electron donor has many features in common with a beryllium bond with an O or N atom as the electron donor, although they do exhibit some different characteristics. The stability of the XMH3···NH3 complex is dominated by the electrostatic interaction, while the orbital interaction also makes an important contribution. Interestingly, as the identities of the X and M atoms are varied, the strength of the tetrel bond fluctuates in an irregular manner, which can explained by changes in electrostatic potentials and orbital interactions. In the ternary systems, both the beryllium bond and the tetrel bond are enhanced, which is mainly ascribed to increased electrostatic potentials on the corresponding atoms and charge transfer. In particular, when compared to the strengths of the tetrel and beryllium bonds in the binary systems, in the ternary systems the tetrel bond is enhanced to a greater degree than the beryllium bond.
Graphical Abstract A tetrel bond can be strengthened greatly by a beryllium bond
  相似文献   

15.
Evidence for signaling, communication, and conductivity in microtubules (MTs) has been shown through both direct and indirect means, and theoretical models predict their potential use in both classical and quantum information processing in neurons. The notion of quantum information processing within neurons has been implicated in the phenomena of consciousness, although controversies have arisen in regards to adverse physiological temperature effects on these capabilities. To investigate the possibility of quantum processes in relation to information processing in MTs, a biophysical MT model is used based on the electrostatic interior of the tubulin protein. The interior is taken to constitute a double-well potential structure within which a mobile electron is considered capable of occupying at least two distinct quantum states. These excitonic states together with MT lattice vibrations determine the state space of individual tubulin dimers within the MT lattice. Tubulin dimers are taken as quantum well structures containing an electron that can exist in either its ground state or first excited state. Following previous models involving the mechanisms of exciton energy propagation, we estimate the strength of exciton and phonon interactions and their effect on the formation and dynamics of coherent exciton domains within MTs. Also, estimates of energy and timescales for excitons, phonons, their interactions, and thermal effects are presented. Our conclusions cast doubt on the possibility of sufficiently long-lived coherent exciton/phonon structures existing at physiological temperatures in the absence of thermal isolation mechanisms. These results are discussed in comparison with previous models based on quantum effects in non-polar hydrophobic regions, which have yet to be disproved.  相似文献   

16.
The crystal structure of the cooperative dimeric hemoglobin from the arcid clam, Scapharca inaequivalvis, has been determined in the carbonmonoxy state. The phase problem was solved for reflections with Bragg spacings greater than 3 A using anomalous scattering from the porphyrin iron atoms measured at a single wavelength in combination with molecular averaging. The model built into this electron density map has been refined at 2.4 A resolution by means of stereochemically restrained least squares minimization to a conventional R-value of 0.156. The root mean square deviation from ideal bond lengths and angles are 0.013 A and 1.7 degrees, respectively. In addition to the 2336 hemoglobin atoms, 214 water molecules have been incorporated into the model. This structure reveals the details of an assemblage of two identical myoglobin-like subunits that is radically different from vertebrate hemoglobins. The subunit interface is formed by direct apposition of the E and F helices, whereas these surfaces are external in vertebrate hemoglobins. The interface has both hydrophobic and hydrophilic character. Two symmetrically related hydrophobic regions are formed between subunits. Six residues are involved in each of these regions that pack tightly enough to exclude water but have only a few atoms in close van der Waals contact. A number of ordered water molecules line the interface and form bridging hydrogen bonds between subunits. Four intersubunit ionic interactions are formed, two of which involve negatively charged propionate groups of the porphyrin. In contrast to cooperative vertebrate hemoglobins, a hydrogen bond network provides a direct route for communication between the two heme groups.  相似文献   

17.
The interactions between pyrimidine nucleotides: cytidine-5'-diphosphate (CDP) and cytidine-5'-triphosphate (CTP) and Cu(II) ions, spermine (Spm) and 1,11-diamino-4,8-diazaundecane (3,3,3-tet) have been studied. The composition and stability constants of the complexes formed have been determined by means of the potentiometric method, while the centres of interactions in the ligands have been identified by the spectral methods (UV-Vis, Ultraviolet and Visible spectroscopy; EPR, electron spin resonance; NMR). In the systems without metal, formation of the molecular complexes nucleotide-polyamine with the interaction centres at the endocyclic nitrogen atom of purine ring N3, the oxygen atoms of the phosphate group from the nucleotide and protonated nitrogen atoms of the polyamine have been detected. Significant differences have been found in the metallation between the systems with Spm and with 3,3,3-tet. In the systems with spermine, mainly protonated species are formed with the phosphate group of the nucleotide and deprotonated nitrogen atoms of the polyamine making the coordination centres, while the donor nitrogen atom of the nucleotide N3 is involved in the intramolecular interligand interactions, additionally stabilising the complex. In the systems with 3,3,3-tet, the MLL' type species are formed in which the oxygen atoms of the phosphate group and nitrogen atoms of the polyamine are involved in metallation, whereas the N3 atom from the pyrimidine ring of the nucleotide is located outside the inner coordination sphere of copper ion. The main centre of Cu(II) interaction in the nucleotide, both in the system with Spm and 3,3,3-tet is the phosphate group of the nucleotide.  相似文献   

18.
A one-dimensional hybrid model of the dynamics of atoms, ions, and electrons in the channel of a stationary plasma thruster is developed. The relevant set of integrodifferential equations is studied numerically. The results obtained are compared with the results of previous calculations based on a hydrodynamic model. It is shown that, with the use of one fitting parameter (the channel resistance), the calculated integral characteris-tics agree well with the experimental ones. The current-voltage characteristic is obtained. The general features of low-frequency oscillations that have been revealed in numerical simulations using the model proposed are also in fairly good agreement with experimental results. The value of the electron thermal conductivity is estimated.  相似文献   

19.
The π electron cloud of aromatic centers is known to be involved in several noncovalent interactions such as C—H···π, O—H···π, and π···π interactions in biomolecules. Lone-pair (lp) ··· π interactions have gained attention recently and their role in biomolecular structures is being recognized. In this article, we have carried out systematic analysis of high-resolution protein structures and identified more than 400 examples in which water oxygen atoms are in close contact (distance < 3.5 Å) with the aromatic centers of aromatic residues. Three different methods were used to build hydrogen atoms and we used a consensus approach to find out potential candidates for lp···π interactions between water oxygen and aromatic residues. Quantum mechanical calculations at MP2/6-311++G(d,p) level on model systems based on protein structures indicate that majority of the identified examples have energetically favorable interactions. The influence of water hydrogen atoms was investigated by sampling water orientations as a function of two parameters: distance from the aromatic center and the angle between the aromatic plane and the plane formed by the three water atoms. Intermolecular potential surfaces were constructed using six model compounds representing the four aromatic amino acids and 510 different water orientations for each model compound. Ab initio molecular orbital calculations at MP2/6-311++G(d,p) level show that the interaction energy is favorable even when hydrogen atoms are farthest from the aromatic plane while water oxygen is pointing toward the aromatic center. The strength of such interaction depends upon the distance of water hydrogen atoms from the aromatic substituents. Our calculations clearly show that the lp···π interactions due to the close approach of water oxygen and aromatic center are influenced by the positions of water hydrogen atoms and the aromatic substituents.  相似文献   

20.
The Craig-Gordon evaporative enrichment model of the hydrogen (δD) and oxygen (δ18O) isotopes of water was tested in a controlled-environment gas exchange cuvette over a wide range (400‰ δD and 40‰ δ18O) of leaf waters. (Throughout this paper we use the term “leaf water” to describe the site of evaporation, which should not be confused with “bulk leaf water” a term used exclusively for uncorrected measurements obtained from whole leaf water extractions.) Regardless of how the isotopic composition of leaf water was achieved (i.e. by changes in source water, atmospheric vapor δD or δ18O, vapor pressure gradients, or combinations of all three), a modified version of the Craig-Gordon model was shown to be sound in its ability to predict the δD and δ18O values of water at the site of evaporation. The isotopic composition of atmospheric vapor was shown to have profound effects on the δD and δ18O of leaf water and its influence was dependent on vapor pressure gradients. These results have implications for conditions in which the isotopic composition of atmospheric vapor is not in equilibrium with source water, such as experimental systems that grow plants under isotopically enriched water regimes. The assumptions of steady state were also tested and found not to be a major limitation for the utilization of the leaf water model under relatively stable environmental conditions. After a major perturbation in the δD and δ18O of atmospheric vapor, the leaf reached steady state in approximately 2 h, depending on vapor pressure gradients. Following a step change in source water, the leaf achieved steady state in 24 h, with the vast majority of changes occurring in the first 3 h. Therefore, the Craig-Gordon model is a useful tool for understanding the environmental factors that influence the hydrogen and oxygen isotopic composition of leaf water as well as the organic matter derived from leaf water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号