首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comprehension over the interactions between lithium (Li) atoms and tungsten (W) or molybdenum (Mo) are crucial to improve the wettability of the flowing liquid Li, a candidate plasma facing material in fusion devices, on the surfaces of supported substrate metals. In this work, we utilize first-principles density- functional theory calculations to figure out the adsorption and diffusion properties of Li atoms and clusters on the (111) surfaces of W and Mo. It is found that single Li atom in the fcc-hollow site is the most favored configuration. For the multiple Li atoms adsorption on the substrates, the planar construction is more stable than the stacking one. The electronic structure analysis shows that the lateral interaction between Li atoms is very weak and the binding between Li atom and the substrates is strong; therefore, it can be inferred that the liquid Li is “wetting” intrinsically on the surfaces of the W and Mo substrates. We also investigate the effect of defects (vacancy, H, C, and O) and find that the preexisted vacancy in the substrates has little effect on the wettability; however, the impurities (especially O atom) will hinder the movement of Li atoms on the metal substrates.  相似文献   

2.
The use of lithium as a material of the tokamak in-vessel plasma-facing components made it necessary to develop appropriate diagnostic instruments. For the T-10 and T-11M tokamaks, devices have been developed that allow one to investigate the processes of lithium transport in the tokamak scrape-off layer, the dynamics of lithium deposition at different temperatures of the collecting surface in real time by using a piezoelectric quartz detector, adsorption and desorption of the plasma-forming gas by lithium, and the influence of the electric field on the process of lithium collection. The plasma parameters are monitored using Langmuir probes. The developed devices can be used to extract lithium deposited on the tokamak vessel wall without breaking vacuum conditions. For these purposes, a gateway and a vacuum input without bellows have been designed on the basis of an innovative liquid-metal coupling.  相似文献   

3.
Ar + H2 plasma interacting with liquid lithium was carried out on a one-cathode linear plasma device (SCU-PSI). The lithium sample was covered with capillary porous structure (CPS). It is found that the electron temperature of applied plasma ranged from ~0–1 eV and electron density ranged from 0.1 × 1020 to 1 × 1020 m?3. The experimental results indicate that a reduction in the electron temperature and the lithium evaporation is found as the percentage of H2 increases When the ratio of argon and hydrogen keeps constant, the electron temperature and lithium evaporation increase with applied input power, respectively. The retention of hydrogen atoms in lithium surface results in reducing the lithium evaporation. The XRD analysis result shows that during plasma radiation no LiH is formed.  相似文献   

4.
An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H(2)S) in oil field porous media. The reactor was a packed bed (50 x 5.5 cm) tubular reactor. Sea sand (140 to 375 mum) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Lithium‐sulfur (Li‐S) batteries are being considered as the next‐generation high‐energy‐storage system due to their high theoretical energy density. However, the use of a lithium‐metal anode poses serious safety concerns due to lithium dendrite formation, which causes short‐circuiting, and possible explosions of the cell. One feasible way to address this issue is to pair a fully lithiated lithium sulfide (Li2S) cathode with lithium metal‐free anodes. However, bulk Li2S particles face the challenges of having a large activation barrier during the initial charge, low active‐material utilization, poor electrical conductivity, and fast capacity fade, preventing their practical utility. Here, the development of a self‐supported, high capacity, long‐life cathode material is presented for Li‐S batteries by coating Li2S onto doped graphene aerogels via a simple liquid infiltration–evaporation coating method. The resultant cathodes are able to lower the initial charge voltage barrier and attain a high specific capacity, good rate capability, and excellent cycling stability. The improved performance can be attributed to the (i) cross‐linked, porous graphene network enabling fast electron/ion transfer, (ii) coated Li2S on graphene with high utilization and a reduced energy barrier, and (iii) doped heteroatoms with a strong binding affinity toward Li2S/lithium polysulfides with reduced polysulfide dissolution based on first‐principles calculations.  相似文献   

6.
A facile and scalable approach is reported to stabilize the lithium‐metal anode by regulating the Li nucleation and deposition kinetics with laser‐induced graphene (LIG). By processing polyimide (PI) films on copper foils with a laser, a 3D‐hierarchical composite material is constructed, consisting of a highly conductive copper substrate, a pillared array of flexible PI, and most importantly, porous LIG on the walls of the PI pillars. The high number of defects and heteroatoms present in LIG significantly lowers the Li nucleation barrier compared to the copper foil. An overpotential‐free Li nucleation process is identified at current densities lower than 0.2 mA cm?2. Theoretical computations reveal that the defects serve as nucleation centers during the heterogeneous nucleation of lithium. By adopting such composites, ultrastable lithium‐metal anodes are obtained with high Coulombic efficiencies of ≈99%. Full lithium‐metal cells based on LiFePO4 cathodes with a material loading of ≈15 mg cm?2 and a negative/positive ratio of 5/1 could be cycled over 250 times with a capacity loss of less than 10%. The current work highlights the importance of nucleation kinetics on the stability of metallic anodes and demonstrates a practical method toward long lasting Li‐metal batteries.  相似文献   

7.
The velocity of propagation of a disturbance wave in a liquid flowing in a distensible tube is computed. The mathematical model is more general than those used in previous analyses: the tube wall properties are realistic; the convective part of the axial inertia forces is taken into account; radial inertia forces of both the fluid and tube wall are present; viscous stresses are present. Four parameters influencing the velocity of propagation are obtained and discussed. Curves are plotted illustrating the effects of the parameters. Contrary to the results of previous analyses, viscous effects are shown to be appreciable in blood flow. It is also shown that radial inertia effects can be important in laboratory set-ups. The material presented in this paper was adapted from the Ph.D. thesis written by the author at Harvard University.  相似文献   

8.
Dynamical clustering of red blood cells in capillary vessels   总被引:3,自引:0,他引:3  
We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.  相似文献   

9.
Optimizing the interfacial contacts between the photoactive layer and the electrodes is an important factor in determining the performance of organic solar cells (OSCs). A charge‐selective layer with tailored electrical properties enhances the charge collection efficiency and interfacial stability. Here, the potential of hydrogenated TiO2 nanoparticles (H‐TiO2 NPs) as an efficient electron‐selective layer (ESL) material in OSCs is reported for the first time. The H‐TiO2 is synthesized by discharge plasma in liquid at atmospheric pressure, which has the benefits of a simple one‐pot synthesis process, rapid and mild reaction conditions, and the capacity for mass production. The H‐TiO2 exhibits high conductivity and favorable energy level formation for efficient electron extraction, providing a basis for an efficient bilayer ESL system composed of conjugated polyelectrolyte/H‐TiO2. Thus, the enhanced charge transport and extraction efficiency with reduced recombination losses at the cathode interfacial contacts is achieved. Moreover, the OSCs composed of H‐TiO2 are almost free of light soaking, which has been reported to severely limit the performance and stability of OSCs based on conventional TiO2 ESLs. Therefore, H‐TiO2 as a new efficient, stable, and cost‐effective ESL material has the potential to open new opportunities for optoelectronic devices.  相似文献   

10.
To analyze if chemical cell wall alterations contribute to penicillin-induced bacteriolysis, changes in the amount, stability, and chemical composition of staphylococcal cell walls were investigated. All analyses were performed before onset of bacteriolysis i.e. during the first 60 min following addition of different penicillin G doses. Only a slight reduction of the amount of cell wall material incorporated after penicillin addition at the optimal lytic concentration was observed as compared to control cells. However, the presence of higher penicillin G concentrations reduced the incorporation of wall material progressively without bacteriolysis. Losses of wall material during isolation of dodecylsulfate insoluble cell walls were monitored to assess the stability of the wall material following penicillin addition. Wall material grown at the lytic penicillin concentration was least stable but about 30% of the newly incorporated wall material withstood even the harsh conditions of mechanical breakage and dodecylsulfate treatment. Dodecylsulfate insoluble cell walls were used for chemical analyses. While peptidoglycan chain length was unaffected in the presence of penicillin, other wall parameters were considerably altered: peptide cross-linking was reduced in the wall material synthesized after addition of penicillin; reductions from approx. 85% in controls to about 60% were similar for lytic and also for very high penicillin concentrations leading to nonlytic death. O-acetylation was also reduced after treatment with penicillin; this effect paralleled the occurence of subsequent bacteriolysis at different drug concentrations. The results are not consistent with hypotheses explaining penicillin-induced lysis as a result of an overall weakened cell wall structure or an overall activation of autolytic wall enzymes but not conflicting with the model that ascribes penicillin-induced bacteriolysis as the result of a very restricted, local perforation of the peripheral cell wall (murosome-induced bacteriolysis).Abbreviations CL Cross-linking - DNFB 2,4-dinitro-1-fluorobenzole - MIC Minimal inhibitory concentration - OD Optical density at 578 nm - PEN Penicillin G  相似文献   

11.
Naiki T  Karino T 《Biorheology》1999,36(3):243-256
The effect of steady shear flow on concentration polarization of plasma proteins and lipoproteins at the luminal surface of a semipermeable vessel wall was studied experimentally using suspensions of these molecules in a cell culture medium and a semipermeable membrane dialysis tube which served as a model of an implanted vascular graft or an artery. The study was carried out by flowing a cell culture medium containing fetal calf serum or bovine plasma lipoproteins or bovine albumin through a 7.5 mm diameter, 60 mm-long dialysis tube in steady flow under a physiologic mean arterial perfusion pressure of 100 mmHg, and measuring the filtration velocity of water (cell culture medium) at the vessel wall which varied as a consequence of the change in concentration of plasma protein particles at the luminal surface of the semipermeable membrane dialysis tube. It was found that for perfusates containing plasma proteins and/or lipoproteins, filtration velocity of water was the lowest in the absence of flow, and it increased or decreased as the flow rate (hence wall shear rate) increased or decreased from a certain non-zero value, indicating that surface concentration of protein particles varied reversibly as a direct function of flow rate. It was also found that at particle concentrations equivalent to those found in a culture medium containing serum at 5% by volume, plasma lipoproteins which were much smaller in number and lower in concentration but larger in size than albumin, had a much larger effect on the filtration velocity of water than albumin. These findings were very much the same as those previously obtained with a cultured endothelial cell monolayer, strongly suggesting that the flow-dependent variation in filtration velocity of water at a vessel wall results from a physical phenomenon, that is, flow-dependent concentration polarization of low density lipoproteins at the luminal surface of the endothelial cell monolayer.  相似文献   

12.
Herein, the successful synthesis of MnPO4‐coated LiNi0.4Co0.2Mn0.4O2 (MP‐NCM) as a lithium battery cathode material is reported. The MnPO4 coating acts as an ideal protective layer, physically preventing the contact between the NCM active material and the electrolyte and, thus, stabilizing the electrode/electrolyte interface and preventing detrimental side reactions. Additionally, the coating enhances the lithium de‐/intercalation kinetics in terms of the apparent lithium‐ion diffusion coefficient. As a result, MP‐NCM‐based electrodes reveal greatly enhanced C‐rate capability and cycling stability—even under exertive conditions like extended operational potential windows, elevated temperature, and higher active material mass loadings. This superior electrochemical behavior of MP‐NCM compared to as‐synthesized NCM is attributed to the superior stability of the electrode/electrolyte interface and structural integrity when applying a MnPO4 coating. Employing an ionic liquid as an alternative, intrinsically safer electrolyte system allows for outstanding cycling stabilities in a lithium‐metal battery configuration with a capacity retention of well above 85% after 2000 cycles. Similarly, the implementation in a lithium‐ion cell including a graphite anode provides stable cycling for more than 2000 cycles and an energy and power density of, respectively, 376 Wh kg?1 and 1841 W kg?1 on the active material level.  相似文献   

13.
This paper describes velocity fields for fully developed periodic laminar flow in a rigid tube with a porous wall. We obtained an analytical solution of the flow by the linear approximation of the Navier-Stokes equation. Unlike the previous works with a constant seepage rate along the axis, we used a wall velocity which contained hydraulic permeation constant Lp. The axial velocity profile shows a local maximum velocity near the wall at a large Womersley number alpha. This suggests that concentration polarization in porous tubular membrane may be reduced at high frequencies if a membrane device is operated under pulsatile flow conditions. The magnitude of wall permeation velocity decreases linearly along the tube axis because the damping of the pressure difference between the inside and the outside of the tube is very small.  相似文献   

14.
Numerous benefits of porous electrode materials for lithium ion batteries (LIBs) have been demonstrated, including examples of higher rate capabilities, better cycle lives, and sometimes greater gravimetric capacities at a given rate compared to nonporous bulk materials. These properties promise advantages of porous electrode materials for LIBs in electric and hybrid electric vehicles, portable electronic devices, and stationary electrical energy storage. This review highlights methods of synthesizing porous electrode materials by templating and template‐free methods and discusses how the structural features of porous electrodes influence their electrochemical properties. A section on electrochemical properties of porous electrodes provides examples that illustrate the influence of pore and wall architecture and interconnectivity, surface area, particle morphology, and nanocomposite formation on the utilization of the electrode materials, specific capacities, rate capabilities, and structural stability during lithiation and delithiation processes. Recent applications of porous solids as components for three‐dimensionally interpenetrating battery architectures are also described.  相似文献   

15.
Mycelium of the mold Aspergillus niger was used as a raw material for the preparation of microbial chitosan. Aspergillus niger, the mold used for the production of citric acid, contains approx. 15% of chitin, which can be separated, transformed into chitosan, and used as a sorbent for chromatography. The main advantage of this material in comparison with krill chitosan is the uniformity of particle size leading to the low back-pressure in the column. The other advantage is the fact, that original fibrous structure of mycelial pellets could be stabilized before chitosan preparation by cross-linking with glutaraldehyde. The product prepared by this way -- crosslinked chitosan of uniform particle size, is highly porous, with high water regain and, as a result, low sedimentation velocity. Low sedimentation velocity is not disadvantage in chromatographic application, but may form some problems in batchwise operation. Chitosan as a polymer of glucosamine is anion exchanger in nature and the chromatographic properties of this anion exchanger was demonstrated by the chromatography of bovine blood plasma, glucose oxidase, and chicken pepsinogen. In all cases, the course of chromatography on crosslinked chitosan was compared with the chromatography on MONO Q (bovine blood plasma) or DEAE-cellulose (glucose oxidase, chicken pepsinogen) under the same protocol.  相似文献   

16.
Solid state electrolytes are the key components for high energy density lithium ion batteries and especially for lithium metal batteries where lithium dendrite growth is an inevitable obstacle in liquid electrolytes. Solid polymer electrolytes based on a complex of polymers and lithium salts are intrinsically advantageous over inorganic electrolytes in terms of processability and film‐forming properties. But other properties such as ionic conductivity, thermal stability, mechanical modulus, and electrochemical stability need to be improved. Herein, for the first time, 2D additives using few‐layer vermiculite clay sheets as an example to comprehensively upgrade poly(ethylene oxide)‐based solid polymer electrolyte are introduced. With clay sheet additives, the polymer electrolyte exhibits improved thermal stability, mechanical modulus, ionic conductivity, and electrochemical stability along with reduced flammability and interface resistance. The composite polymer electrolyte can suppress the formation and growth of lithium dendrites in lithium metal batteries. It is anticipated that the clay sheets upgraded solid polymer electrolyte can be integrated to construct high performance solid state lithium ion and lithium metal batteries with higher energy and safety.  相似文献   

17.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

18.
A polypyrrole/reduced graphene oxide (PPy/r‐GO) composite film is prepared by inducing electrochemical reduction of graphene oxide incorporated into PPy as the dopant. This film has a wrinkled surface morphology with a porous structure as revealed by scanning electron microscopy. Its porous structure is attributed to the physical nature of the GO sheets, providing a templating effect during PPy deposition. This PPy/r‐GO composite is characterized using in‐situ UV–visible spectroelectrochemistry as well as Raman and Fourier‐transform IR spectroscopy. The PPy/r‐GO material shows greatly improved electrochemical properties, i.e., a high rate capability and excellent cycling stability when used as a cathode material in a lithium ion battery. It also delivers a large reversible capacity when used as an anode material, and this is mainly attributed to the reduced graphene oxide (r‐GO) component.  相似文献   

19.
巫山龙骨坡人类门齿的归属问题   总被引:9,自引:2,他引:7       下载免费PDF全文
王谦 《人类学学报》1996,15(4):320-323
本文讨论了巫山人类门齿的归属问题。根据形态及数据分析,它可能为晚期智人的右上外侧门齿、后期混入了巫山龙骨坡洞穴沉积之中。  相似文献   

20.
Wada S  Karino T 《Biorheology》1999,36(3):207-223
It is suspected that physical and fluid mechanical factors play important roles in the localization of atherosclerotic lesions and intimal hyperplasia in man by affecting the transport of cholesterol in flowing blood to arterial walls. Hence, we have studied theoretically the effects of various physical and fluid mechanical factors such as wall shear rate, diffusivity of low density lipoproteins (LDL), and filtration velocity of water at the vessel wall on surface concentration of LDL at an arterial wall by means of a computer simulation of convective and diffusive transport of LDL in flowing blood to the wall of a straight artery under conditions of a steady flow. It was found that under normal physiologic conditions prevailing in the human arterial system, due to the presence of a filtration flow of water at the vessel wall, flow-dependent concentration polarization (accumulation or depletion) of LDL occurs at a blood/endothelium boundary. The surface concentration of LDL at an arterial wall takes higher values than that in the bulk flow in that vessel, and it is affected by three major factors, that is, wall shear rate, gamma w, filtration velocity of water at the vessel wall, Vw, and the distance from the entrance of the artery, L. It increases with increasing Vw and L, and decreasing gamma w hence the flow rate. Thus, under certain circumstances, the surface concentration of LDL could rise locally to a value which is several times higher than that in the bulk flow, or drop locally to a value even lower than a critical concentration for the maintenance of normal functions and survival of cells forming the vessel wall. These results suggest the possibility that all the vascular phenomena such as the localization of atherosclerotic lesions and intimal hyperplasia, formation of cerebral aneurysms, and adaptive changes of lumen diameter and wall structure of arteries and veins to certain changes in hemodynamic conditions in the circulation are governed by this flow-dependent concentration polarization of LDL which carry cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号