首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma decay in high-voltage nanosecond discharges in CO2: O2 and Ar: O2 mixtures at room gas temperature and a pressure of 10 Torr is studied experimentally and theoretically. The time dependence of the electron density during plasma decay is measured using microwave interferometry. The time evolution of the charged particle density, ion composition, and electron temperature is simulated numerically. It is shown that, under the given conditions, the discharge plasma is dominated for the most time by O 2 + ions and plasma decay is determined by dissociative and three-body electron?ion recombination. As in the previous studies performed for air and oxygen plasmas, agreement between measurements and calculations is achieved only under the assumption that the rate of three-body recombination of molecular ions is much greater than that for atomic ions. The values of the rate constant of three-body recombination of electrons with О2 + ions in a wide range of electron temperatures (500–5500 K), as well as for thermal (300 K) electrons, are obtained by processing the experimental results.  相似文献   

2.
In experiments on the plasma heating and confinement in the GOL-3 multimirror trap, a deuterium plasma with a density of ~1015 cm?3 and an ion temperature of 1–2 keV is confined for more than 1 ms. The plasma is heated by a relativistic electron beam. The ion temperature, which was measured by independent methods, reached 1.5–2 keV after the beginning of the beam injection. Since such a fast ion heating cannot be explained by the classical energy transfer from electrons to ions through binary collisions, a theoretical model of collective energy transfer was proposed. In order to verify this model, a new diagnostics was designed to study the dynamics of neutron emission from an individual mirror cell of the multimirror trap during electron beam injection. Intense neutron bursts predicted by this model were detected experimentally. Periodic neutron flux modulation caused by the macroscopic plasma flow along the solenoid was observed. The revealed mechanism of fast ion heating can be used to achieve fusion temperatures in the multimirror trap.  相似文献   

3.
To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 1010–1011 cm–3, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.  相似文献   

4.
A study is made of the Z-pinch plasma expansion after the current is switched off. Measurements were carried out in experiments on the implosion of tungsten wire arrays in the Angara-5-1 facility. It is found experimentally that, at a distance of 2 m from the pinch, the ion velocity in the expanding Z-pinch plasma is about (2.5–4.0) × 107 cm/s, which substantially exceeds the thermal velocity of tungsten ions. A model describing the plasma expansion process is proposed that is based on the ambipolar acceleration mechanism. The results of numerical simulations are compared with the experimental data.  相似文献   

5.
A liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI-MS/MS) method for the determination of andrographolide in human plasma was established. Dehydroandrographolide was used as the internal standard (I.S.). The plasma samples were deproteinized with methanol and separated on a Hanbon C18 column with a mobile phase of methanol–water (70:30, v/v). HPLC–ESI-MS/MS was performed in the selected ion monitoring (SIM) mode using target ions at [M?H2O–H]?, m/z 331.1 for andrographolide and [M?H]?, m/z 331.1 for the I.S. Calibration curve was linear over the range of 1.0–150.0 ng/mL. The chromatographic separation was achieved in less than 6.5 min. The lower limits of quantification (LLOQ) was 1.0 ng/mL. The intra and inter-run precisions were less than 6.95 and 7.22%, respectively. The method was successfully applied to determine the plasma concentrations of andrographolide in Chinese volunteers.  相似文献   

6.
The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5–2 gO2/gN-NH4 + for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k L a) determined in the laboratory scale reactor was 0.017?s?1 for a superficial air velocity of 0.02?m s?1, and the one determined in the pilot scale reactor was 0.040?s?1 for a superficial air velocity of 0.031?m?s?1. The k L a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm.  相似文献   

7.
The possibility of using a Hall-current accelerator to extract ions from a partially ionized plasma produced by selective laser isotope photoionization of atomic vapor is examined. A mechanism for ion acceleration is investigated using one-dimensional time-dependent equations of two-fluid magnetohydrodynamics. The current cutoff due to the ion space charge is prevented by electron emission. It is shown that, at an accelerating voltage of 25–50 V and emission current density of several mA/cm2, the ion component is accelerated throughout the entire plasma volume up to a velocity of ~105 cm/s in a few microseconds. The influence of resonant charge exchange and secondary ionization by electrons on both the acceleration dynamics and selectivity degradation is taken into account. It is shown that the Hall-current extractor allows one to avoid selectivity degradation even when the plasma size exceeds the charge-exchange mean free path by one order of magnitude.  相似文献   

8.
A micro-Z-pinch has been recognized as a possible spark for the ignition of a dense D-T plasma [1–3]. The use of such a spark to ignite advanced fuels has been explored only superficially [4, 5]. In this paper, we address the problem of the transition between an ignited D-T plasma and a section of an advanced fuel such as D or D + He3. Some general rules are derived for the parameters of a conical channel of D-T that amplifies the spark energy to a level suitable for the ignition of a detonation wave in an inertially confined cylinder of highly compressed advanced fuel plasma.  相似文献   

9.
Power densities and oxidation–reduction potentials (ORPs) of MFCs containing a pure culture of Shewanella oneidensis MR‐1 were compared to mixed cultures (wastewater inoculum) in cube shaped, 1‐, 2‐, and 3‐bottle batch‐fed MFC reactor configurations. The reactor architecture influenced the relative power produced by the different inocula, with the mixed culture generating 68–480% more power than MR‐1 in each MFC configuration. The mixed culture produced the maximum power density of 858 ± 9 mW m?2 in the cubic MFC, while MR‐1 produced 148 ± 20 mW m?2. The higher power by the mixed culture was primarily a result of lower internal resistances than those produced by the pure culture. Power was a direct function of ohmic resistance for the mixed culture, but not for strain MR‐1. ORP of the anode compartment varied with reactor configuration and inoculum, and it was always negative during maximum power production but it did not vary in proportion to power output. The ORP varied primarily at the end of the cycle when substrate was depleted, with a change from a reductive environment during maximum power production (approximately ?175 mV for mixed and approximately ?210 mV for MR‐1 in cubic MFCs), to an oxidative environment at the end of the batch cycle (~250 mV for mixed and ~300 mV for MR‐1). Mixed cultures produced more power than MR‐1 MFCs even though their redox potential was less negative. These results demonstrate that differences between power densities produced by pure and mixed cultures depend on the MFC architecture. Biotechnol. Bioeng. 2010; 105: 489–498. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Laser spectroscopy measurements of the effective temperature of Ar1+ ions in the PNX-U multipole trap, in which argon plasma is ionized and heated by microwaves under electron-cyclotron-resonance conditions, are performed using a narrow-band tunable dye laser. The absorption profile of the 611.5-nm line is examined. In a microwave power range of 5–50 kW, the observed behavior of the effective temperature of argon ions Ti, eff indicates an anomalous mechanism for ion heating. It is shown that certain information about the electron temperature can be deduced from measurements by the laser-induced fluorescence (LIF) technique. The measurements performed also serve to test the laser technique and apparatus that is presently being developed for diagnosing additives to the ITER divertor plasma by the LIF method.  相似文献   

11.
B. Dufy  J.L. Barker 《Life sciences》1982,30(22):1933-1941
Voltage clamp recordings of GH3/B6 pituitary cells reveal the presence of non linear steady state membrane properties at the level of the resting potential (about ?41 mV). Clamping the cells to potentials more depolarized than ?60 mV is associated with a potential dependent increase in membrane conductance and membrane current variance. Tetra-ethylammonium (TEA), Cobalt (Co2+) and methoxy-verapamil (D-600) each attenuate these potential-dependent changes. Spectral analysis of membrane current fluctuations shows that power spectral densities calculated for fluctuations occuring over the ? 70 to ? 40 mV range declin? monotonically as a function of frequency, while spectra derived from fluctuations obtained over the ? 20 mV to 0 mV range decline as the square of frequency and are usually well fitted by a single Lorentzian equation. The half-power frequency of these spectra varies from 45 to 65 Hz. If we assume that the activities of two-state (open-closed) ion channels underlie the electrical behaviour of the membrane at the resting potential and at more depolarized levels, then the results suggests the presence of K+ ion channels whose activation depends both on potential and Ca2+ ions. These K+ ion channels have estimated electrical properties (conductance : 15 ps ; duration : 3 msec) similar to those present in other excitable membranes.  相似文献   

12.
The efficiency of utilizing ambipolar mirrors for suppression of longitudinal losses of particles and energy in a gas-dynamic trap (GDT) was investigated. An additional relatively small axisymmetric mirror cell was installed in one of the facility ends. Hydrogen or deuterium atomic beams with an energy of 22 keV and equivalent current density of up to 1 A/cm2 were injected into the additional cell at an angle of 90° to the facility axis. Trapping of the beams with a total power of 800 kW by the plasma in the additional cell leads to the formation of a hot ion population with an anisotropic velocity distribution, a mean energy of 13 keV, and a density of up to 4.5 × 1013 cm−3. It is shown that the confinement of hot ions in the additional cell is determined by classical processes, such as charge exchange on the beam atoms and collisional deceleration by electrons, in spite of the onset of Alfvén ion-cyclotron instability at fast ion densities higher than 2.5 × 1013 cm−3. The effect of ambipolar confinement manifests itself in that, at hot ion densities higher than 3 × 1013 cm−3, the flux density of ions escaping from the trap in the mode with beam injection decreases fivefold as compared to that without injection. In this case, the density of the Maxwellian plasma component in the central cell is about 2.5 × 1013 cm−3. The efficiency of suppression of longitudinal particle losses by the ambipolar mirror substantially exceeds estimates obtained for both collisional (gas-dynamic) and collisionless (adiabatic) confinement modes. Qualitatively, this is because, in the GDT experiments, the mode of warm plasma confinement is transitional between the gas-dynamic and adiabatic modes and the use of an ambipolar mirror facilitates a transition from the lossy gas-dynamic mode into a nearly adiabatic one.  相似文献   

13.
A study is made of the effect of the initial magnetic field magnitude on the energy of deuterium ions accelerated in the collision of two magnetosonic shock waves propagating in a deuterium plasma quasi-perpendicularly to the magnetic field. Experiments were carried out at a constant plasma density of ?2.5×1013 cm?3. It is found that, as the external magnetic field decreases from 1.4 to 0.7 T and, accordingly, the magnetic Mach number increases from 1.02 to 2.3, the energy of accelerated ions increases from 3.2 to 7.5 MeV. The maximum number of accelerated ions attains 105–106 particles per shot.  相似文献   

14.
Results of experimental and theoretical study of plasma decay in the afterglow of high-voltage nanosecond discharges in gaseous ethylene and dimethyl ether at room temperature and pressures from 2 to 20 Torr are presented. Using a microwave interferometer, the time behavior of the electron density in the range from 2 × 1010 to 3 × 1012 cm–3 during plasma decay is investigated. By processing the experimental data, the effective coefficients of electron–ion recombination as functions of the gas pressure are obtained. It is found that these coefficients substantially exceed the recombination coefficients of simple hydrocarbon ions. This distinction, as well as the increase in the effective recombination coefficient with pressure, is explained by the formation of cluster ions in three-body collisions, which recombine with electrons more efficiently than simple molecular ions. The coefficients of three-body conversion of simple molecular ions into cluster ions in the plasmas of ethylene and dimethyl ether, as well as the coefficients of recombination of electrons with cluster ions in these gases, are determined by analyzing the experimental data.  相似文献   

15.
An injector of hydrogen atoms for plasma diagnostics in modern tokamaks has been developed at the Budker Institute of Nuclear Physics (Novosibirsk). The ion source of the injector produces a proton (helium ion) beam with a current of up to 2 A (1 A), an ion energy of up to 55 keV, a beam divergence of ~0.6\deg, and a pulse duration of up to 10 s. An RF discharge-based plasma emitter, which is one of the main parts of the ion source, is described. The emitter diameter is 72 mm, the ion current density is 120 mA/cm2, and the inhomogeneity of the current density is ±6%. The beam is formed by a four-electrode ionoptical system with 163 round apertures. At a current of 2 A, the ion beam consists of 67% protons, 18% H 2 + ions, and 15% H 3 + ions, the total content of heavier ions in the beam being no higher than 2–3%.  相似文献   

16.
Between pH 4–10, basal ATPase activity, measured in the absence of mineral ions, was 10 to 100 times higher in the final cytoplasmic supernatant from potato tuber homogenates than in the membraneous fractions (purified plasmalemma, purified mitochondria and microsomes). The soluble ATPase was slightly inhibited, whereas the membrane-bound ATPases were all stimulated by Mg2+ ions. A further stimulation by Na+ or K+ ions was only observed in purified plasmalemma or mitochondria, at alkaline pH (7.5–9.5). At a fixed (Na++ K+) concentrations (80 mM), this last stimulation was much greater in purified mitochondria (350%) than in plasmalemma (33%); it also increased with (Na++ K+) concentrations up to 200 mM in mitochondria whereas, in plasmalemma, it was roughly constant for monovalent ion concentrations between 20 and 200 mM. General properties of the plasma membrane-bound ATPase have been determined, i.e. substrate specificity, activity variations with quantity of substrate, temperature, pH, etc. Divalent cations stimulated strongly the ATPase in the following order: Mn2+ > Mg2+ > Ca2+. The maximum ATP hydrolysis velocity for that part of ATPase activity which is strictly dependent on Mg2+ ions was 3.85 μmol × mg?1 protein × h?1. This plasma membrane ATPase was not sensitive to ouabaïn or to oligomycin.  相似文献   

17.
We have carried out molecular dynamics (MD) simulations of the limiting conductances of CaCl2 in ambient and supercritical states as a function of water density using extended simple point charge (SPC/E) and revised polarizable (RPOL) models for ions and water molecules. Both models predict the limiting conductances of CaCl2 in supercritical water that are a linear dependence on water density. The effect of the electronic polarization on the limiting conductances is too small to cause a deduction in the lower water density of 0.6?~?0.7?g/cc in this study. The most significant effect of the electronic polarization is appeared in a decrease in the ion–water potential energy and, as a result, an increase in the limiting conductances for both ions. Different charge distributions of water molecules in the first hydration shell around the ions lead the opposite behavior of the induced dipole moment with water density for a positive and a negative ion in supercritical water; the induced dipole moment of Ca2+ decreases with increasing water density but for Cl-, the opposite is observed. The same kind of opposite behavior due to the structure of water molecules around the ions is also found in hydrogen-bond correlations of water around the ions and of bulk water; hydrogen bonding around Ca2+ persists longer than in bulk water whereas the opposite is observed for Cl-.  相似文献   

18.
A variety of metal ions can bind to the iron-transport protein, transferrin, at two specific sites. For each metal ion, a carboxylate anion is concomitantly bound. Six metal ions which were examined fall into two classes based on proton release and ultraviolet spectral changes which accompany binding to the protein. Class II ions, which include Cu2+ and Zn2+, release approximately 2 H+/metal bond. Class III ions, which include Fe3+, Ga3+, Al3+, and VO2+, release approximately 3 H+/metal bound. The increase in absorbance near 242 nm, characteristic of tyrosine ionization, has the ratio 0.55–0.75 for class II:class III ions. Both Fe3+ and Cu2+ form metal-transferrin-oxalate complexes in the presence of excess C2O42?. Fe3+ releases close to 3 H+/metal whether forming oxalate or bicarbonate complexes with transferrin. Binding of Cu2+ to transferrin releases 2 H+/metal in the presence of C2O2?4 or HCO3?. Since equal numbers of H+/metal are released for both anions, it is likely that the bicarbonate ion does not lose its proton, and remains as HCO3? in transferrin. These results are interpreted in terms of possible combinations of ligands at the metal binding sites.  相似文献   

19.
H P Hopkins  W D Wilson 《Biopolymers》1987,26(8):1347-1355
Enthalpy changes (ΔHB) for the binding of ethidium (a monocation) and propidium (a dication) to calf thymus DNA have been determined calorimetrically in piperazine-N, N′-bis(2-ethanesulfonic acid) buffer with the fluoride ion as the counterion. Heats of dilution for the fluoride salts of ethidium and propidium were substantially less than the corresponding values found for other halide salts of these cations. At a Na+ ion concentrations of 0.019, ΔHB = ?8.3 and ?7.9 ± 0.3 kcal mol?1 for ethidium and propidium, respectively. For these two cations, just as was observed for the naphthalene monoimide (monocation) and diimide (dication) [H. P. Hopkins, K. A. Stevenson, and W. D. Wilson, (1986) J. Sol. Chem. 15 , 563–579], ΔHB is within the same experimental error for both cations. Apparently, charge–charge interactions in DNA–cation complexes produce only small changes in the enthalpy for the system. In the concentration range 0.019–0.207, the ΔHB values for propidium did not depend appreciably on the Na+ ion concentration, and a similar pattern was shown to exist for ethidium. When these results were combined with ΔGB values for the binding of these cations to DNA, we found the variation of ΔSB with Na+ ion concentration to be remarkably close to the predictions of modern polyelectrolyte theory, i.e., propidium binding to DNA causes approximately twice as many Na+ ions to be released into the bulk solution as does the binding of ethidium. The much stronger binding of propidium, relative to ethidium, at low ionic strengths is thus seen to be primarily due to entropic effects.  相似文献   

20.
A new and sensitive method is described for the determination of histamine and Nτ-methylhistamine in human plasma and urine by gas chromatography-mass spectrometry. 15N2-Labeled histamine and Nτ-[methyl-d3]methylhistamine were used as internal standards. Histamine and Nτ-methylhistamine were converted to the derivatives Nα-heptafluorobutyryl-Nτ-ethoxycarbonylhistamine and Nα-heptafluorobutyryl-Nτ-methylhistamine, respectively. After these derivatives had been purified on a small column packed with CPG-10, the molecular ions were monitored during selected ion monitoring. Linear standard curves were obtained in the range of 0.5–10 ng/ml for both compounds. The reliability of the histamine analysis was demonstrated by using two different ion pairs, while a comparison with results from two different derivatizations on the same urine sample also established the specificity of the Nτ-methylhistamine analysis. An increase of 1 ng of histamine in the plasma could be precisely determined by the present method. The histamine content of plasma from five normal subjects was determined as 0.83 ÷ 0.37 (S.D.) ng/ml and the Nτ-methylhistamine content in most subjects was below the limits of this measurement. High excretion of histamine was noted in the urine collected in the early morning from a patient with nephritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号