首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A system of kinetic equations describing relatively slow large-scale processes in collisionless magnetoplasma structures with a spatial resolution of about the characteristic gyroradius is derived. Plasma is assumed to be quasineutral, while the magnetic and electric fields are determined by the instantaneous distributions of the particle and current densities and the stress tensor of all plasma components in the longrange instantaneous interaction approximation. A special version of equations is derived for the case of magnetized electrons described by the Vlasov equation in the drift approximation. The obtained system of equations can be used to develop a global numerical kinetic model of the Earth’s magnetosphere with a spatial resolution of about 100 km, as well as local models of certain regions of the Earth’s magnetosphere with a higher resolution.  相似文献   

2.
A study is made of the one-dimensional linear problem of the absorption of the energy of an extraordinary wave propagating along a nonuniform magnetic field by a plasma in the ECR region. The plasma electrons are assumed to be nonrelativistic and are described by a collisionless kinetic equation. The distribution of the absorbed power among the electrons and the distribution of the self-consistent field over the confinement system are obtained. The conditions under which the ECRH power is distributed uniformly among the bulk electrons are determined. The limits of applicability of the locally nonuniform magnetic field approximation are established. The solutions derived are compared with the solution to an analogous problem with the collisional absorption mechanism.  相似文献   

3.
4.
The propagation of ion-acoustic solitary waves (IASWs) in a magnetized collisionless degenerate plasma system for describing collective plasma oscillations in dense quantum plasmas with relativistically degenerate electrons, oppositely charged inertial ions, and positively charged immobile heavy elements is investigated theoretically. The perturbations of the magnetized quantum plasma are studied employing the reductive perturbation technique to derive the Korteweg–de Vries (KdV) and the modified KdV (mKdV) equations that admit solitary wave solutions. Chandrasekhar limits are used to investigate the degeneracy effects of interstellar compact objects through the equation of state for degenerate electrons in nonrelativistic and ultrarelativistic cases. The basic properties of small but finite-amplitude IASWs are modified significantly by the combined effects of the degenerate electron number density, pair ion number density, static heavy element number density, and magnetic field. It is found that the obliqueness affects both the amplitude and width of the solitary waves, whereas the other parameters mainly influence the width of the solitons. The results presented in this paper can be useful for future investigations of astrophysical multi-ion plasmas.  相似文献   

5.
The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampère force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.  相似文献   

6.
Results are presented from one-dimensional quasistatic simulations of steady microwave discharges in a spherically symmetric electrode system in nitrogen at pressures of 1–8 Torr. The computational model includes the equation for calculating the electric field strength in the quasistatic approximation, Poisson’s equation, the balance equations describing the kinetics of charged and neutral plasma particles, and the time-independent homogeneous Boltzmann equation for electrons. The processes involving vibrationally excited particles are taken into account by the familiar analytic expression for the vibrational distribution of molecules in the diffusion approximation. It is shown that, because of the electric field nonuniformity, the physical properties (in particular, the plasma ion composition) are different in different discharge regions.  相似文献   

7.
The problem of the stability of a charged plasma cylinder in crossed longitudinal magnetic and radial electric fields is considered under the assumption that the plasma electrons are magnetized and distributed uniformly in space and that the plasma ions have a low density and move without collisions. By using the Vlasov and Poisson equations for the electric and magnetic fields of arbitrary strengths and by expanding the radial eigenfunctions in Bessel functions, a dispersion relation is obtained for the modified ion cyclotron frequencies. The dispersion relation obtained is solved for the case of hot plasma electrons. At low ion densities, the oscillation spectra are stable and are described by the families of dispersion curves lying closely around the harmonics of the modified cyclotron frequency (including the zeroth harmonic). At higher ion densities, the dispersion curves for the frequencies of the lowest radial oscillation modes in neighboring families can intersect, leading to instability. The maximum instability growth rate can be several tenths of the modified ion cyclotron frequency.  相似文献   

8.
A mechanism is proposed that can lead to radial ion acceleration in a plasma discharge excited by an electron beam in a relatively weak longitudinal magnetic field. The mechanism operates as follows. The beam generates an azimuthally asymmetric slow potential wave, which traps electrons. Trapped magnetized electrons drift radially with a fairly high velocity under the combined action of the azimuthal wave field (which is constant for them) and a relatively weak external longitudinal magnetic field. The radial electron flux generates a radial charge-separation electric field, which accelerates unmagnetized plasma ions in the radial direction. The ion flux densities and energies achievable in experiments with kiloelectronvolt electron beams in magnetic fields of up to 100 G are estimated.  相似文献   

9.
Numerical solutions to the equations describing the process of ion acceleration in a Hall current plasma accelerator (thruster) are studied. The system itself represents a three-component plasma: neutral atoms, free electrons, and singly-ionized atoms. The ions in the acceleration tract move without collisions, i.e., the length of the free path of ions is larger than that of the acceleration tract, while electrons move in a diffusion mode across the magnetic field. It is shown that in case the Poisson equation for an electric field is used the set of dynamic equations does not have an acoustic peculiarity that appears when solving a quasineutral set when the velocity of the ion flow and the ion-acoustic velocity coincide.  相似文献   

10.
The problem is solved of the stability of a nonneutral plasma that completely fills a waveguide and consists of magnetized cold electrons and a small density fraction of ions produced by ionization of the atoms of the background gas. The ions are described by an anisotropic distribution function that takes into account the characteristic features of their production in crossed electric and magnetic fields. By solving a set of Vlasov-Poisson equations analytically, a dispersion equation is obtained that is valid over the entire range of allowable electric and magnetic field strengths. The solutions to the dispersion equation for the m = +1 main azimuthal mode are found numerically. The plasma oscillation spectrum consists of the families of Trivelpiece-Gould modes at frequencies equal to the frequencies of oblique Langmuir oscillations Doppler shifted by the electron rotation and also of the families of “modified” ion cyclotron (MIC) modes at frequencies close to the harmonics of the MIC frequency (the frequencies of radial ion oscillations in crossed fields). It is shown that, over a wide range of electric and magnetic field strengths, Trivelpiece-Gould modes have low frequencies and interact with MIC modes. Trivelpiece-Gould modes at frequencies close to the harmonics of the MIC frequency with nonnegative numbers are unstable. The lowest radial Trivelpiece-Gould mode at a frequency close to the zeroth harmonic of the MIC frequency has the fastest growth rate. MIC modes are unstable over a wide range of electric and magnetic field strengths and grow at far slower rates. For a low ion density, a simplified dispersion equation is derived perturbatively that accounts for the nonlocal ion contribution, but, at the same time, has the form of a local dispersion equation for a plasma with a transverse current and anisotropic ions. The solutions to the simplified dispersion equation are obtained analytically. The growth rates of the Trivelpiece-Gould modes and the behavior of the MIC modes agree with those obtained by numerical simulation.  相似文献   

11.
The stability of Alfvén modes in a collisionless plasma with an anisotropic pressure in a highly curved magnetic field is studied. A linearized equation for describing longitudinally nonuniform MHD perturbations with frequencies below the bounce frequency is derived. In this equation, the perturbations of longitudinal and transverse pressures are calculated using a collisionless kinetic equation. It is shown that longitudinal fluxes of the transverse and longitudinal plasma energies give rise to pressure perturbations different from those in the Chew-Goldberger-Low collisionless hydrodynamics. The corresponding energy principle is constructed. A stability criterion for Alfvén modes is obtained and is found to be more stringent than that in the Chew-Gold-berger-Low model.  相似文献   

12.
The problem is considered of configurations of a strongly magnetized inviscid plasma around a rotating magnetized central body. Strong plasma magnetization implies that the Hall conductivity is much lower than the transverse conductivity, which in turn is much lower than the longitudinal conductivity. For such conditions, a self-consistent set of equations is derived that describes the conduction current density, the magnetic and electric fields, and the angular frequency of the plasma rotation under the assumptions that the components of the dielectric tensor of the plasma envelope are known functions of height and that the plasma mass velocity has only the azimuthal component. Under the assumption that the transverse conductivity is constant over a magnetic surface, the nonlinear equations derived are solved in quadratures within the class of angular frequency distributions that are symmetric about the equatorial plane. A particular solution for the plasma configurations in a dipole magnetic field is considered that corresponds to a model exponential dependence of the transverse conductivity on the number of the L-envelope (or, equivalently, on the number of the unperturbed magnetic surface).  相似文献   

13.
14.
Self-consistent steady-state axisymmetric configurations of a plasma envelope with a uniform anisotropic conductivity around a rotating magnetized spherical body are considered. A set of electrodynamic and magnetohydrodynamic equations is analyzed under the assumption that the mass velocity of a moving weakly ionized plasma has only the azimuthal component. The equations describing the profile of the angular frequency of the rotating plasma envelope, the magnetic field, the conduction currents, and the plasma density distribution are solved in the limit of a strong anisotropy of the conductivity of a weakly ionized gas. The applicability of the results obtained to a qualitative interpretation of the phenomena occurring in the plasmaspheres of magnetized planets is discussed.  相似文献   

15.
Recent multispacecraft observations in the Earth’s magnetosphere have revealed an abundance of magnetic holes—localized magnetic field depressions. These magnetic holes are characterized by the plasma pressure enhancement and strongly localized currents flowing around the hole boundaries. There are several numerical and analytical models describing 2D configurations of magnetic holes, but the 3D distribution of magnetic fields and electric currents is studied poorly. Such a 3D magnetic field configuration is important for accurate investigation of charged particle dynamics within magnetic holes. Moreover, the 3D distribution of currents can be used for distant probing of magnetic holes in the magnetosphere. In this study, a 3D magnetic hole model using the single-fluid approximation and a spatial scale hierarchy with the distinct separation of gradients is developed. It is shown that such 3D holes can be obtained as a generalization of 1D models with the plasma pressure distribution adopted from the kinetic approach. The proposed model contains two magnetic field components and field-aligned currents. The magnetic field line configuration resembles the magnetic trap where hot charged particles bounce between mirror points. However, the approximation of isotropic pressure results in a constant plasma pressure along magnetic field lines, and the proposed magnetic hole model does not confine plasma along the field direction.  相似文献   

16.
Results are presented from experimental studies of electron vortex bunches in a cold ion-beam plasma consisting of strongly magnetized electrons and a beam of almost free positive ions. The existence of electron vortex bunches was detected from local minima of the electric potential on surfaces perpendicular to the magnetic field lines. It is found that the vortices have the form of magnetic-field-aligned filaments, in which electrons rotate with a velocity significantly exceeding both the velocity of the vortex as a whole and the electron velocity in the ambient plasma. It is shown that, in a sufficiently strong magnetic field, the accumulation of electrons in the vortices terminates when the condition for the longitudinal confinement of electrons by the electric field fails to hold.  相似文献   

17.
Maity  R.  Sahu  B. 《Plasma Physics Reports》2022,48(3):305-313
Plasma Physics Reports - A multicomponent collisionless magnetized plasma system consisting of cold mobile electron fluid, hot electrons and positrons following the q-nonextensive distribution, and...  相似文献   

18.
Solutions describing solitary fast magnetosonic (FMS) waves (FMS solitons) in cold magnetized plasma are obtained by numerically solving two-fluid hydrodynamic equations. The parameter domain within which steady-state solitary waves can propagate is determined. It is established that the Mach number for rarefaction FMS solitons is always less than unity. The restriction on the propagation velocity leads to the limitation on the amplitudes of the magnetic field components of rarefaction solitons. It is shown that, as the soliton propagates in plasma, the transverse component of its magnetic field rotates and makes a complete turn around the axis along which the soliton propagates.  相似文献   

19.
A rigorous theoretical investigation has been made of obliquely propagating electrostatic solitary structures in a magnetized plasma, taking into account the effect of nonextensive electrons. By employing the reductive perturbation method, the basic characteristics of obliquely propagating ion-acoustic (IA) solitary waves (SWs) in a cold magnetized electron-ion plasma (consisting of inertial ions and noninertial q-distributed electrons) have been addressed. The Korteweg-de Vries equation is derived and its numerical solution is obtained. It has been shown that the effects of electron nonextensivity and external magnetic field significantly modify the natures of the small but finite-amplitude IA SWs. The present analysis may be useful to understand and demonstrate the dynamical properties of IA SWs in different astrophysical and cosmological scenarios (viz. stellar polytropes, hadronic matter, quark-gluon plasma, protoneutron stars, dark-matter halos, etc.).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号