首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review is given on microwave discharges in liquid dielectrics—a relatively new direction in the physics and application of low-temperature plasma. The main types of experimental devices are described, and available information on the plasma parameters obtained by emission spectroscopy is presented. Examples of application of discharges in liquid dielectrics, such as solution of ecological problems and production of hydrogen, nanomaterials, and diamonds, are considered.  相似文献   

2.
Results are presented from experimental studies of the emission spectra of microplasma discharges excited on a titanium surface by a pulsed plasma flow. The excited discharges are maintained by current pulses with an amplitude of 200 A and a duration of 20 ms. Analysis of more than 100 spectral lines of titanium atoms and ions in the wavelength range of 350–800 nm shows that the electron temperature of a microplasma discharge is in the range of 0.2–1.3 eV.  相似文献   

3.
The applicability of the CXSFIT code to process experimental data from Charge-eXchange Recombination Spectroscopy (CXRS) diagnostics at the T-10 tokamak is studied with a view to its further use for processing experimental data at the ITER facility. The design and operating principle of the CXRS diagnostics are described. The main methods for processing the CXRS spectra of the 5291-Å line of C5+ ions at the T-10 tokamak (with and without subtraction of parasitic emission from the edge plasma) are analyzed. The method of averaging the CXRS spectra over several shots, which is used at the T-10 tokamak to increase the signal-to-noise ratio, is described. The approximation of the spectrum by a set of Gaussian components is used to identify the active CXRS line in the measured spectrum. Using the CXSFIT code, the ion temperature in ohmic discharges and discharges with auxiliary electron cyclotron resonance heating (ECRH) at the T-10 tokamak is calculated from the CXRS spectra of the 5291-Å line. The time behavior of the ion temperature profile in different ohmic heating modes is studied. The temperature profile dependence on the ECRH power is measured, and the dynamics of ECR removal of carbon nuclei from the T-10 plasma is described. Experimental data from the CXRS diagnostics at T-10 substantially contribute to the implementation of physical programs of studies on heat and particle transport in tokamak plasmas and investigation of geodesic acoustic mode properties.  相似文献   

4.
A benzo[a]pyrene derivative, 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, forms physical complexes with DNA. The measured absorption spectrum of the hydrocarbon in the complex is shifted approximately 10 nm to the red and the fluorescence emission spectrum is red-shifted approximately 6 nm, characteristic of a physical intercalation complex. The decay-associated emission spectra of the hydrocarbon in the presence of DNA have been measured, thus providing a new technique to obtain information about the DNA binding sites. The decay-associated emission spectra of the free and bound hydrocarbons were obtained by deconvoluting the time-dependent emission at several wavelengths. Stern-Volmer plots with iodide and silver ions as quenchers suggest that at least one set of binding sites for the formation of a physical intercalation complex between the benzo[a]pyrene derivative and DNA is at guanine sites in the biopolymer.  相似文献   

5.
The investigations of major disruptions in the TVD and DAMAVAND tokamaks showed that, in the rapid phase of disruption, accelerated (~1 keV) ions and charge-exchange neutrals are generated near the rational magnetic surfaces; this is accompanied by the bursts of line emission from light impurities (C, O). In the present paper, an analysis is made of the bursts of the CV triplet emission (2271–2278 Å) observed over all of the viewing chords in high-current discharges and also of a decrease in the spectral line emission below its initial (predisruption) level both in the plasma core and at the plasma edge in low-current discharges. The data from measurements of the spatial and temporal parameters of the CV line emission from the central and peripheral plasma regions in the rapid phase of disruption in the DAMAVAND tokamak are compared to the results from model calculations of the kinetics of the charge-state distribution of carbon impurity ions (during the disruption, their kinetics is governed by the increase in the effective recombination rate). A key result of the kinetic model is an increase in the effective rate of charge exchange of impurity ions by two orders of magnitude. Numerical simulations show that the dispersion of the charge-state distribution increases substantially; this is attributed to the rapid phase of disruption being dominated by the recombination of impurity ions through charge exchange with neutrals rather than by the anomalous transport. In this case, carbon impurities in the plasma are transported to the region of increased radiative losses on a time scale of 50 μs.  相似文献   

6.
The uptake mechanism of liquid hydrocarbons of low solubility in water was investigated, using microorganisms with different affinities for liquid hydrocarbon. Microorganisms which could utilize hydrocarbon were much more adherent to hydrocarbon than those which could not. The adhesive force between Candida intermedia IFO 0761 and hydrocarbon was higher than that of Candida tropicalis ATCC 20336, though both could utilize hydrocarbon; The total hydrocarbon uptake from the drop and accommodation forms of hydrocarbons was much higher than that from dissolved hydrocarbon. The uptake rate of drop-form hydrocarbon was nearly equal to that of accommodation-form hydrocarbon for C. intermedia, but was lower for C. tropicalis which shows lower adhesion to hydrocarbon.  相似文献   

7.
The purpose here was to study the effect of process parameters on breathing zone concentrations of gaseous hydrocarbons generated from an Electrical Discharge Machining process. Peak current, pulse duration, dielectric level above the spark location, and flushing pressure were the process parameters considered. Gas chromatography coupled with mass spectrometry (GC/MS) was used to analyze the hydrocarbon components of gaseous emission. Peak current and pulse duration appeared the most significant. A significant fraction of emission was of reaction products of dielectric fluid that included high molecular weight hydrocarbons, branched chain hydrocarbons and other reaction products. Possible measures to control and minimize risk of exposure were outlined as well.  相似文献   

8.
Results of experiments on high-voltage discharges in air with a pressure gradient are presented. The experiments were carried out at the setup developed at the Institute of Applied Physics, Russian Academy of Sciences. The goal of the experiments was laboratory modeling of high-altitude atmospheric discharges―sprites and jets. The setup and diagnostic techniques are described. The experimental results include the distribution of the gas pressure in the vacuum chamber formed by means of pulsed air puffing, photographs of discharges in air with a pressure gradient, and the dependences of the discharge current and optical emission intensity on the initial conditions.  相似文献   

9.
WhenNeurospora crassa is grown on a minimal medium with sucrose as the carbon source, aryl hydrocarbon [benzo(α)pyrene] hydroxylase is induced in the presence of low concentrations of benzo(α)pyrene. Benzo(α)pyrene, a potent precarcinogen, is taken up readily by the growing mycelium and is metabolized by the intracellular enzymes to yield hydroxylated derivatives. Fractionation of the products by high pressure liquid chromatography following extraction in organic solvents revealed the presence of one major product. The purified major product was identified as 3-hydroxybenzo(α)pyrene by mass spectral analysis and by comparison of fluorescence emission and ultraviolet absorption spectra with authentic samples.  相似文献   

10.
Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil–water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase.  相似文献   

11.
Results of experimental and theoretical study of plasma decay in the afterglow of high-voltage nanosecond discharges in gaseous ethylene and dimethyl ether at room temperature and pressures from 2 to 20 Torr are presented. Using a microwave interferometer, the time behavior of the electron density in the range from 2 × 1010 to 3 × 1012 cm–3 during plasma decay is investigated. By processing the experimental data, the effective coefficients of electron–ion recombination as functions of the gas pressure are obtained. It is found that these coefficients substantially exceed the recombination coefficients of simple hydrocarbon ions. This distinction, as well as the increase in the effective recombination coefficient with pressure, is explained by the formation of cluster ions in three-body collisions, which recombine with electrons more efficiently than simple molecular ions. The coefficients of three-body conversion of simple molecular ions into cluster ions in the plasmas of ethylene and dimethyl ether, as well as the coefficients of recombination of electrons with cluster ions in these gases, are determined by analyzing the experimental data.  相似文献   

12.
Results are presented from experimental studies of a pulsed source of soft X-ray (SXR) emission with photon energies in the range of 0.4–1 keV and an output energy of 2–10 kJ. SXR pulses with a duration of 10–15 μs were generated in collisions of two plasma flows propagating toward one another in a longitudinal magnetic field. The plasma flows with velocities of (2–4) × 107 cm/s and energy contents of 70–100 kJ were produced by two electrodynamic coaxial accelerators with pulsed gas injection. Nitrogen and neon, as well as their mixtures with deuterium, were used as working gases. The diagnostic equipment is described, and the experimental results obtained under different operating conditions are discussed. In particular, X-ray spectroscopy was used to study the high-temperature plasma produced in a collision of two plasma flows. The observed intensities of spectral lines are compared with the results of detailed kinetic calculations performed in a steady-state approximation. The calculations of the nitrogen and neon kinetics have shown that the electron temperature of a nitrogen plasma can be most conveniently determined from the intensity ratio of the resonance lines of He- and H-like nitrogen ions, while that of a neon plasma, from the intensity ratio between the resonance line of He-like Ne IX ions and the 3p?2s line of Li-like Ne VIII ions. In the experiments with plasma flows containing nitrogen ions, the electron temperature was found to be ≈120 eV, whereas in the experiments with plasma flows containing neon ions, it was 160–170 eV.  相似文献   

13.
Results are presented from studies of the behavior of hard X-ray emission in discharges with current disruptions in the DAMAVAND and TVD tokamaks. The current disruptions are caused by either an MHD instability or the instability related to the vertical displacement of the plasma column. Experiments were conducted at a fixed value of the safety factor at the plasma boundary (q a ? 2.3). Experimental data show that, during a disruption caused by an MHD instability, hard X-ray emission is suppressed by this instability if the amplitude of the magnetic field fluctuations exceeds a certain level. If the disruption is caused by the instability related to the vertical displacement of the plasma column, then hard X-ray emission is observed at the instant of disruption. The experimental results show that the physical processes resulting in the generation and suppression of runaway electron beams are almost identical in large and small tokamaks.  相似文献   

14.
Results are presented from numerical simulations of electron-cyclotron emission spectra from the plasma of the L-2M stellarator under the conditions corresponding to experiments on electron-cyclotron resonance heating. The spectra are calculated in the model of a two-component electron plasma, each component (thermal and suprathermal) having a Maxwellian distribution. It is shown that, even when suprathermal electrons contribute insignificantly to the total plasma energy, they may considerably affect both the shape and intensity of the electron-cyclotron emission spectrum. The occurrence of a high spectral peak at the frequency corresponding to the resonance ω = 2ωce on the low-field side of the plasma column in regimes with a high specific heating power is explained.  相似文献   

15.
Mechanism of uptake of liquid hydrocarbons by microorganisms   总被引:2,自引:0,他引:2  
Growth rates of Candida tropicalis were studied in two different fermentors. One was the ordinary shaker flask containing both the aqueous culture medium and liquid hydrocarbons. The other was a specially designed rotating disk-type fermentor containing only the aqueous culture medium, into which vapors of n-paraffins from C6 to C18 were supplied continuously without forming the liquid hydrocarbon phase. The specific growth rates of Candida tropicalis in the rotating disk fermentor, under such conditions that supply of hydrocarbon vapor was sufficient, showed good agreement with those in the shaker flask. This seems to indicate that hydrocarbon uptake by Candida tropicals by direct contact with liquid hydrocarbon is negligible.  相似文献   

16.
The production of excited xenon iodides and iodine dimers in the plasma of a longitudinal dc glow discharge is investigated. The discharge was ignited in iodine vapor and Xe/I2 mixtures at xenon pressures of P(Xe)=0.1–1.5 kPa and deposited powers of 10–100 W. The current-voltage characteristics of a glow discharge, the plasma emission spectra in the spectral range of 200–650 nm, and the intensities of spectral lines and molecular bands are studied as functions of the deposited power and the xenon partial pressure in a Xe/I2 mixture. It is found that the discharge plasma emits within the spectral range of 206–343 nm, which includes the 206-nm resonant line of atomic iodine and the XeI(B-X) 253-nm and I2(B-X) 343-nm molecular bands. The power deposited in the plasma and the xenon pressure P(Xe) are optimized to achieve the maximum UV emission intensity. The 7-W total UV power emitted from the entire surface of the cylindrical discharge tube is achieved with an efficiency of ≤5%.  相似文献   

17.
This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators — a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes.  相似文献   

18.
The marine coccolithophore, Emiliania huxleyi, grown in the laboratory was subjected to vacuum pyrolysis at various temperatures from 100 to 500 °C. The highest yield of pyrolytic gases (183 mL g−1 dry cells) was obtained at 400 °C. The amount of total hydrocarbon gas produced at 400 °C was 129 mL, about 10 times higher than at 300 °C. CH4 was the major component at the high gas-production stage (400–500 °C). The great increase in hydrocarbon gases at 400 °C was accompanied by a marked decrease in liquid saturates and aromatics. The results indicate that the liquid hydrocarbons (oil) produced by pyrolysis at lower temperature is a direct source for the formation of the hydrocarbon gases. Due to its large potential for the production of biomass and hydrocarbons with low energy input, E. huxleyi is suggested as one of candidates for the production of renewable fuels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Choline kinase catalyzes the first rate-limiting step in the pathway of biosynthesis of phosphatidylcholine. This enzyme was shown previously to be induced in liver by treatment of rats with polycyclic aromatic hydrocarbons (Ishidate et al. (1980) Biochem. Biophys. Res. Commun. 96, 946-952). The present study was undertaken to determine whether choline kinase in the murine hepatoma cell line, Hepa 1c1c7, is inducible by aromatic hydrocarbons and, if so, whether this induction is mediated by the aromatic hydrocarbon receptor. Treatment of Hepa 1c1c7 cells with 10 microM beta-naphthoflavone resulted in a 1.6-fold increase of choline kinase activity, but no response was seen when the cells were exposed to either 5.0 microM benzo[a]pyrene or 1.0 nM 2.3,7,8-tetrachlorodibenzo-p-doxin, both potent inducers of aryl hydrocarbon hydroxylase. Cell line variants with either deficient or elevated aromatic hydrocarbon receptors showed no increase in choline kinase activity following treatment with any of the polycyclic aromatic hydrocarbons. These results are not consistent with a role for the aromatic hydrocarbon receptor in increased choline kinase activity in Hepa 1c1c7 cells.  相似文献   

20.
The metabolic profile of plasma of white non-linear rats was investigated under normal conditions and after chronic inhalation exposure to low doses of aliphatic hydrocarbons (HC) with the number of carbon atoms from 6 to 10. The metabolic profile was determined by a combination of gas chromatography/mass spectrometry and high-performance liquid chromatography/high-resolution mass spectrometry with the subsequent use of chemometrical methods for data treatment and presentation. It was shown that continuous 90-day exposure to a mixture of C6–C10 saturated hydrocarbons at a concentration of 160 ± 20.5 mg/m3 leads to various metabolic impairments in the liver and kidneys. Exposure to hydrocarbon mixtures at doses of 31.4 ± 5.6 and 5.2 ± 1.8 mg/m3 evoked significantly smaller changes. Novel metabolic markers of the toxic effect of low concentrations of C6–C10 aliphatic hydrocarbons were revealed. The concentration ratio of pyrophosphoric and oxalic acids in rat blood plasma was found to be the most sensitive marker called a pyrophosphate index. A hypothesis was proposed about the disturbance of the redox balance as a leading pathogenetic mechanism of neuropathies and concomitant pathologies associated with chronic HC intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号