首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The excitation of oscillations in a discharge with negative differential conductivity is studied experimentally. The possibility is demonstrated of amplifying oscillations in the cathode dark space at frequencies close to the electron plasma frequency of the positive-column plasma. The phase velocities of waves at these frequencies are determined. When the waves pass from the cathode dark space to the discharge positive column, their phase velocities decrease; the closer the frequency is to the electron plasma frequency, the more pronounced the decrease in the phase velocity. As the intensity of oscillations increases, the discharge becomes non-steady-state. This is confirmed by the time evolution of the current-voltage characteristic. The shape of the current-voltage characteristic, its splitting, and the rate at which it varies depend on the input RF power. The decrease in the cathode dark space indicates that the ionization processes in the discharge are strongly influenced by electron plasma oscillations excited due to the collective interaction of the electron beam formed at the cathode with the discharge plasma. It is these processes that determine the maximum values of both the frequency of the excited oscillations and the power that can be withdrawn from the discharge.  相似文献   

2.
The stimulated scattering of a whistler wave beam forming an extended discharge channel in a magnetic mirror trap is discovered and investigated experimentally. It is shown that the beam is scattered by relaxaction oscillations of the lattice of plasma inhomogeneities excited by the beam field. The spectrum of the pump field in the RF discharge plasma is found to broaden considerably and to contain individual modulation peaks corresponding to lattice oscillations. The peaks are observed at working gas pressures at which the electron mean free path is close to the wavelength of the standing wave forming the discharge channel. A physical model describing the phenomena observed is developed.  相似文献   

3.
The responses of carotid body chemoreceptor discharge to repeated ramps (20- to 60-s forcing cycle durations) of inspired gas tensions were studied in spontaneously breathing and in artificially ventilated pentobarbitone-anesthetized cats. In all animals the mean intensity of chemoreceptor discharge followed the frequency of the forcing cycle, and superimposed on this were oscillations at the frequency of ventilation (breath-by-breath oscillations). The amplitude of the breath-by-breath oscillations in discharge was often large, and it waxed and waned with the forcing cycle. It was greatest when the mean level of discharge was falling and smallest near the peak of mean discharge. No qualitative differences were observed between PO2-alone forcing in constant normocapnia and PCO2-alone forcing in constant hypoxia. The variation in the amplitudes of breath-by-breath oscillations was shown to be due primarily to variations in the amplitudes of the downslope component of the discharge oscillation. Variations in the upslope component of individual oscillations were small. The factors responsible for the breath-by-breath oscillations are discussed, and it is concluded that the shape of the waveform of arterial gas tensions that stimulate the peripheral chemoreceptors departs markedly from that of a line joining end-tidal gas tensions. This causes breath-by-breath oscillations of discharge to be very large after an "off" stimulus. Reflex studies involving the forcing of respiratory gases should therefore include consideration of these effects.  相似文献   

4.
A spherical glow discharge with a pointlike anode is considered in a self-consistent drift-diffusion approximation. The model includes the time-dependent continuity equations for ions and electrons in the drift-diffusion approximation and Poisson’s equation for the radial electric field. In finding steady-state distributions, Ohm’s law is used to relate the discharge voltage and discharge current. Steady-state distributions of the plasma parameters across the discharge gap, current-voltage characteristics, and cathode characteristics for an abnormal spherical discharge in molecular nitrogen are obtained. In a subnormal glow-discharge regime, oscillations in the conduction current, potential, and other discharge parameters are revealed. Similar regimes are also observed in conventional discharges in tubes.  相似文献   

5.
Inhibition in the Limulus lateral eye in situ   总被引:1,自引:1,他引:0       下载免费PDF全文
Inhibition in the Limulus lateral eye in situ is qualitatively similar to that in the excised eye. In both preparations ommatidia mutually inhibit one another, and the magnitude of the inhibitory effects are linear functions of the response rate of individual ommatidia. The strength of inhibition exerted between single ommatidia is also about the same for both preparations; however, stronger effects can converge on a single ommatidium in situ. At high levels of illumination of the retina in situ the inhibitory effects are often strong enough to produce sustained oscillations in the discharge of optic nerve fibers. The weaker inhibitory influences at low levels of illumination do not produce oscillations but decrease the variance of the optic nerve discharge. Thresholds for the inhibitory effects appear to be determined by both presynaptic and postsynaptic cellular processes. Our results are consistent with the idea that a single ommatidium can be inhibited by more of its neighbors in an eye in situ than in an excised eye. Leaving intact the blood supply to the eye appears to preserve the functional integrity of the retinal pathways which mediate inhibition.  相似文献   

6.
During prolonged exposure to extracellular 4-aminopyridine (4 AP) the periodic activity of the somatic membrane of an identified molluscan neurone passes from a repetitive regular discharge of >90 mV amplitude action potentials, through double discharges to <50 mV amplitude oscillations. Return to standard saline causes the growth of parabolic amplitude-modulated oscillations that develop, through chaotic amplitude-modulated oscillations, into regular oscillations. These effects are interpreted in terms of the actions of 4 AP on the dynamics of the membrane excitation equations.Emma and Leslie Reid scholar  相似文献   

7.
Results are presented from experimental studies of electromagnetic emission and plasma oscillations in the plasma-frequency range in the Octupole Galathea confinement system. Experiments are performed in the electric-discharge mode at low magnetic fields (the barrier field is 0.002–0.01 T); the working gas is argon or hydrogen. It is found that the most intense microwave oscillations at frequencies of 1–5 GHz are excited near the plasma axis and in the magnetic-barrier region. The oscillations are excited by the discharge current and decay after the voltage is switched off. The experiments show that microwave oscillations excited in the magnetic-barrier region are responsible for the small value of the energy confinement time in the system.  相似文献   

8.
Mechanisms responsible for current oscillations at the ion branch of the probe characteristic are investigated experimentally and theoretically. A comparison between experiment and theory shows that the oscillations in a hollow-cathode discharge in a longitudinal magnetic field are most likely related to the onset of helical instability.  相似文献   

9.
The mechanisms by which low [K(+)](o) induces spontaneous activity was studied in sheep Purkinje fibers. Purkinje strands were superfused in vitro and membrane potentials were recorded by means of a microelectrode technique. The results show that low [K(+)](o) increases the slope and amplitude of early diastolic depolarization, sharpens the transition between early and late diastolic depolarizations, induces an after-potential and large pre-potentials through a negative shift of an oscillatory zone. Pre-potentials occur progressively sooner during diastole and merge with the after-potential to induce uninterrupted spontaneous discharge. During recovery, when the rate slows, after- and pre-potentials separate once more, the slower discharge decreasing the after-potentials but not the pre-potentials. Low [K(+)](o) has little effect on the plateau, but markedly slows phase 3 repolarization and may altogether prevent it. At depolarized levels, voltage oscillations, slow responses, sinusoidal fluctuations or quiescence may be present depending on voltage. During the recovery, a train of either sub-threshold oscillations or spontaneous action potentials appear towards the end of phase 3 repolarization. The cessation of the action potentials unmasks large sub-threshold oscillations, that occur in the oscillatory zone. Drive, high [Ca(2+)](o) and norepinephrine increase slope and amplitude of early diastolic depolarization as low [K(+)](o) does. In low [K(+)](o), Cs(+) prevents spontaneous discharge at polarized levels, but not the decrease in resting potential nor the onset of slow responses at depolarized levels. Cs(+) blocks the train of oscillations and of action potentials occurring during recovery. We conclude that low [K(+)](o) steepens early diastolic depolarization and increases its amplitude through an after-potential that results from an increased Ca(2+) load; allows the attainment of the threshold through Cs(+)-sensitive voltage oscillations which develop when the oscillatory zone is entered either by diastolic depolarization or by phase 3 repolarization; and causes voltage oscillations also at depolarized levels, but through a Cs(+)-insensitive different mechanism.  相似文献   

10.
Results of experimental studies of microwave processes accompanying plasma acceleration in the SPD-ATON stationary plasma thruster are presented. Specific features of the generation of microwave oscillations in both the acceleration channel and the plasma flow outgoing from the thruster are analyzed on the basis of local measurements of the spectra of the plasma wave fields. Mechanisms for generation of microwave oscillations are considered with allowance for the inhomogeneity of the electron density and magnetic field behind the edge of the acceleration channel. The effect of microwave oscillations on the electron transport and the formation of the discharge current in the acceleration channel is discussed.  相似文献   

11.
The potentialities of the diagnostic method for determining the plasma parameters by recording the surface waves guided by a dielectric waveguide and scattered by plasma oscillations are discussed. The use of surface (slowed) waves makes it possible to improve both the sensitivity and spatial resolution of measurements. The scattering is the most intense near the waveguide cutoff, at which the dependence of the wave propagation constant on the plasma density is the steepest. It is shown experimentally that the method proposed makes it possible to determine the discharge plasma density and electron energy and to estimate the amplitude of the RF field of the plasma waves forming the discharge and the amplitude of plasma density oscillations in these waves. The data obtained from the measurements of the amplitudes of both high-and low-frequency plasma density oscillations by the proposed method agree satisfactorily with theoretical predictions. The experimental data on the plasma density are confirmed by other diagnostic measurements. The ways of reducing measurement errors are proposed.  相似文献   

12.
We examined the well-known spontaneous discharge (SD) and light-evoked (PD) discharge of the crayfish caudal photoreceptor for the possible existence of a daily rhythm in spike frequency. To do this, we isolated the abdominal nerve cord in vitro and studied its discharge frequency in constant darkness. Single cosinor analysis revealed significant SD and PD circadian rhythms (P < .05) with periods tau = 24.4h and 24.2h, respectively. These oscillations correspond to an endogenous circadian discharge of the caudal photoreceptor that is enhanced by light. The importance of this rhythm in the adaptive behavior of crayfish is discussed.  相似文献   

13.
The properties of an electric arc operating in open air at currents of lower than 1 A were studied experimentally. The rod cathode was oriented horizontally. Cylindrical rods and plane plates either installed strictly vertically in front of the cathode end or tilted at a certain angle served as the anode. It is shown that, with such an electrode configuration, it is possible to form a discharge channel much longer than the electrode gap length. Regimes of regular oscillations are revealed, and conditions for their appearance are established. The electric field strength in the arc column and the electron temperature near the anode are calculated.  相似文献   

14.
Gamma frequency network oscillations are assumed to be important in cognitive processes, including hippocampal memory operations, but the precise functions of these oscillations remain unknown. Here, we examine the cellular and network mechanisms underlying carbachol-induced fast network oscillations in the hippocampus in vitro, which closely resemble hippocampal gamma oscillations in the behaving rat. Using a combination of planar multielectrode array recordings, imaging with voltage-sensitive dyes, and recordings from single hippocampal neurons within the CA3 gamma generator, active current sinks and sources were localized to the stratum pyramidale. These proximal currents were driven by phase-locked rhythmic inhibitory inputs to pyramidal cells from identified perisomatic-targeting interneurons. AMPA receptor-mediated recurrent excitation was necessary for the synchronization of interneuronal discharge, which strongly supports a synaptic feedback model for the generation of hippocampal gamma oscillations.  相似文献   

15.
Previous experiments revealed the effect of stable acceleration of ions in a plasma-beam discharge in a low magnetic field to energies one order of magnitude higher than the electron thermal energy. To verify the previously proposed mechanisms for this effect, the velocity distribution function of the electrons arriving at the collector and the energy distribution of the ions escaping from the discharge transversely to the axis were measured. It is found that ion acceleration is accompanied by significant electron heating near the discharge axis. The time behavior and longitudinal profile of the intensity of the excited high-frequency oscillations in the frequency range ω ~ ω pe were studied. The accumulation of regular oscillations in the beam-injection region and their stochastization during the propagation along the system axis were observed. The experimental results correlate qualitatively with the data of previous numerical simulations.  相似文献   

16.
A decrease in the amplitude of the current of a vacuum spark discharge over a dielectric surface with increasing discharge gap length is established. It is shown that, in the presence of a longitudinal magnetic field, the leading edge of the discharge voltage pulse is extended, whereas the clearly pronounced current pulse transforms into a train of alternating current oscillations. The discharge is found to decelerate when the spark is preceded by a low-current discharge.  相似文献   

17.
It was shown by intracellular recording of the activity of olfactory bulb neurons of the carp that their dendrites are excited both by synaptic activation and by direct stimulation with an electric current. The dendrites generate an action potential and probably conduct it for some distance toward the soma. The neurons can be divided into two groups: one responds to ortho- and antidromic stimuli with one, rarely with two peaks, the other responds with a rhythmical discharge. The presence of early and late IPSP is characteristic of neurons of both groups. Rhythmical variations in potential with a frequency of 26–33/sec, so-called oscillations, are recorded; they may be excitatory (in secondary neurons they correspond to EPSP) or inhibitory (they correspond to IPSP). Possible mechanisms of the excitatory oscillations and the rhythmical discharge in olfactory bulb neurons of the carp are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol.3, No.5, pp. 505–511, September–October, 1971.  相似文献   

18.
Plasma Physics Reports - The structure of high-frequency oscillations in the plasma of a Hall thruster (HT) is studied experimentally in two different stable discharge modes: the “jet”...  相似文献   

19.
Intracellular Ca2+ signalling is pivotal to cell function and [Ca2+]i oscillations permit precise and prolonged modulation of an array of Ca2+-sensitive processes without the need for extended, global elevations in [Ca2+]i. We have studied [Ca2+]i signalling in primary rat marrow stromal cells exposed to foetal calf serum (FCS) constituents at concentrations up to those required to promote growth and differentiation in culture. Spontaneous [Ca2+]i signalling was not observed, but exposure to 1% FCS induced regular, sustained Ca2+ oscillations in 41 +/- 3% of cells. Incidence of FCS-induced oscillations was dose-dependent, saturating at 0.5%. These oscillations were arrested by disruption of Ca2+ stores with 100 nM-1 microM thapsigargin or discharge of mitochondrial membrane potential and were sensitive to blockade of IP3-receptors by 50 microM 2-amino-ethoxydiphenyl borate (2-APB) and inhibition of phospholipase C with 5 microM U73122. The oscillations decreased in frequency and amplitude following inhibition of Ca2+ influx with EGTA or La3+ but were poorly sensitive to nifedipine (1-10 microM) and Bay K 8644 (300 nM). The factor(s) responsible for inducing [Ca2+]i oscillations are heat stable, insensitive to disulphide bond reduction with 20 mM dithioerythritol and retained by a 30 kDa molecular weight filter. Serum is routinely present in culture medium at 10%-15% [v/v] and marrow stromal cells maintained under culture conditions exhibited sustained oscillations. This is the first demonstration of agonist-induced complex Ca2+ signals in marrow stromal cells. We conclude that Ca2+ oscillations occur constantly in these cells in culture and are potentially important regulators of cell proliferation and differentiation.  相似文献   

20.
Plasma Physics Reports - The phenomenon of large-scale discharge oscillations in Morozov’s stationary plasma thruster (SPT) is physically interpreted by analyzing global modes of gradient...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号