首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The synthesis of 1,25-dihydroxycholecalciferol [1,25(OH)2D3] and 24,25-dihydroxycholecalciferol [24,25(OH)2D3] from 25-hydroxycholecalciferol [25(OH)D3] has previously been shown to occur in cells isolated from bone. The main findings of the present study are that the enzyme systems which catalyse these syntheses are: (1) active at 'in vitro' substrate concentrations over the range of 2-50 nM; (2) regulatable in a complex way by 1,25(OH)2D3, 24,25(OH)2D3, 25,26-dihydroxycholecalciferol and 25(OH)D3, but not by cholecalciferol ('vitamin D3'); and (3) have relatively short half-lives (approx. 5 h).  相似文献   

2.
The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, on the metabolism of proteoglycans by an osteoblastic cell line MC3T3-E1 were studied. Cells metabolically labeled with [35S]sulfate and/or [3H]glucosamine synthesized large and small dermatan sulfate proteoglycans and heparan sulfate proteoglycan. The incorporation of [35S]sulfate into proteoglycans for 1 h was reduced by 1,25-(OH)2D3 in a dose-dependent manner with a maximum reduction of 40% obtained at 10(-8)M 1,25-(OH)2D3. This effect was observed for all the proteoglycans with the decrease for the large dermatan sulfate proteoglycan most prominent. Treatment with 1,25-(OH)2D3 did not influence the degree of sulfation nor the molecular size of the glycosaminoglycan chains. Thus, the change in the incorporation of [35S] sulfate reflects net change in the synthesis of proteoglycans. When cells were treated with beta-D-xyloside, 1,25-(OH)2D3 also inhibited net synthesis of dermatan sulfate glycosaminoglycan chains on this exogenous substrate suggesting that it decreases the capacity of the cells for glycosaminoglycan synthesis. The incorporation of [3H]glucosamine into hyaluronic acid was also inhibited up to 70% by 10(-8) M 1,25-(OH)2D3. Treatment with 24,25-dihydroxyvitamin D3 did not cause significant changes in the proteoglycan synthesis. Degradation of proteoglycans associated with the cell layer was enhanced by treatment with 1,25-(OH)2D3 at 10(-8) M. Proteoglycans exogenously added to the culture were also degraded with a cell-mediated process which was stimulated by treatment with 10(-8) M 1,25-(OH)2D3. These results demonstrate that 1,25-(OH)2D3 reduces the synthesis and stimulates the degradation of proteoglycans in osteoblastic cells in culture.  相似文献   

3.
4.
Small doses (1-10 microgram daily) of 24,25-dihydroxycholecalciferol (24,25-(OH)2D3), a renal metabolite of vitamin D of uncertain function, increased intestinal absorption of calcium in normal people and in patients with various disorders or mineral metabolism, including anephric subjects. In five of six patients studied, calcium balance increased, but, unlike 1,25-dihydroxycholecalciferol, 24,25-(OH)2D3 did not increase plasma or urinary calcium concentrations. These results suggest that 24,25-(OH)2D3 may be an important regulator of skeletal metabolism in man with potential value as a therapeutic agent.  相似文献   

5.
Effects in vitro of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) on alkaline phosphatase (PAL), gamma-glutamyltransferase (gamma-GT) and acid phosphatase (PAC) activities were investigated on renal cortex from hypophysectomized rats. In these animals the biosynthesis of 1,25-(OH)2D3 and the specific activities of kidney PAL and gamma-GT were decreased. The course of these effects was determined from 45 min to 8 h. In the presence of 1,25-(OH)2D3 (2 x 10(-6) M) a delayed (5h) but simultaneous stimulation of the three enzymes was observed. It reached a maximum at 6h and disappeared at 8h. The dose-response relation was studied at 6h. In the presence of 1,25-(OH)2D3 (5 x 10(-7) M), the three enzymes were activated. The effect was maximal at 10(-6) M; it was +22% for PAL, +17% and +15% respectively for gamma-GT and PAC compared with controls. Cycloheximide suppressed the induction of PAL but not of gamma-GT activity. The effects of the secosteroid on renal enzymes seems to be a pharmacological more than a physiological one.  相似文献   

6.
Injection of 1,25 dihydroxycholecalciferol (1,25(OH)2D3, 10 micrograms) directly into the in situ ligated duodenal loop of rachitic chicks significantly elevated the tissue accumulation of 47Ca within 20-30 min. The transfer of 47Ca from lumen to blood, during the same time period, was not increased nor was there any measurable intestinal calcium-binding protein synthesized. Lesser amounts of 1,25(OH)2D3 (1 or 5 micrograms) did not result in any statistically significant elevation of 47Ca tissue accumulation, nor did they have any effect on 47Ca transfer from lumen to blood (transmural). Ten micrograms of 1,24R,25(OH)3D3 was similarly effective in elevating tissue accumulation, whereas 24R,25(OH)2D3 and 25(OH)D3 were not. These results provide additional evidence for an early and direct action of 1,25(OH)2D3 in altering intestinal epithelial membrane transport prior to the induction of synthesis of specific transport proteins.  相似文献   

7.
Human foreskin keratinocytes in culture produce 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) and 24,25-dihydroxycholecalciferol (24,25-(OH)2D3) from 25-hydroxycholecalciferol (25-(OH)D3). The production of 1,25-(OH)2D3 by these cells correlated with the early events of differentiation such as expression of transglutaminase activity and the levels of a precursor protein for the cornified envelopes, involucrin. In contrast, the increased production of 24,25-(OH)2D3, as 1,25-(OH)2D3 production declined, correlated with the terminal differentiation marker, cornified envelope formation. Exogenous 1,25-(OH)2D3 (10(-11)-10(-9) M) inhibited the 1-alpha-hydroxylase at all stages of growth of these cells. Keratinocytes in culture expressed receptors for 1,25-(OH)2D3 which had similar sedimentation behavior in sucrose density gradients as chick intestinal cytosol receptors. Cells in early stages of growth (preconfluent and confluent) contained higher numbers of receptors (26-27 fmol/mg protein) than post-confluent cells. The dissociation constant (237-278 pM) of these receptors for 1,25-(OH)2D3 was not consistently altered by differentiation. Since 1,25-(OH)2D3 is a potent stimulator of cell differentiation in a variety of systems including the epidermis, our results suggest the possibility that endogenous 1,25-(OH)2D3 production may participate in the differentiation of keratinocytes in culture and, perhaps, in vivo.  相似文献   

8.
Adult rat testis contains a specific, high-affinity, low-capacity binding protein for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) with properties similar to 1,25-(OH)2D3 receptors in other tissues. The receptor sediments at 3.5 +/- 0.2 S20,w in high-salt sucrose density gradients, but aggregates in low-salt gradients. Binding of 1,25-(OH)2D3 was abolished by trypsin, but not by DNase or RNase. Binding was also heavily reduced by the sulfhydryl alkylating agent, N-ethylmaleimide, and by the mercurial reagent, mersalyl, showing that free, reduced SH-groups are necessary for hormone-binding activity. The receptor shows high affinity for 1,25-(OH)2D3 (Kd = 3 X 10(-11) M), but low capacity (Nmax = 8 fmol/mg protein) and is specific for 1,25-(OH)2D3 (Affinity: 1,25-(OH)2D3 greater than 1,24(R),25-(OH)3D3 greater than 25-OH-D3 greater than 1 alpha-OH-D3 greater than 24(R),25-(OH)2D3 much greater than 17 beta-estradiol, testosterone, dexamethasone, R5020, progesterone). With 0.6 nM [3H]1,25-(OH)2D3 and at 0 degrees C, maximum specific binding was achieved after 4 h, and the occupied receptors were stable for more than 24 h. The dissociation of hormone-receptor complexes was temperature-dependent and very slow at low temperature (t1/2 (0 degrees C) much greater than 48 h). At 0 degrees C, the second order association rate constant and the pseudo-first order dissociation rate constant were 2.7 X 10(7) M-1 min-1 and 2 X 10(-5) min-1, respectively. Receptors for 1,25-(OH)2D3 are present in similar amounts in isolated seminiferous tubules and interstitial tissue of adult rats. No specific binding of [3H]1,25-(OH)2D3 could be detected in cultured immature Sertoli cells, cultured immature peritubular (myoid) cells or crude germ cells.  相似文献   

9.
We have shown previously that the in vitro activity of the renal vitamin K-dependent gamma-glutamyl carboxylase toward synthetic oligopeptide substrates is stimulated by administration of either parathyroid hormone (PTH) or 1,25-dihydroxycholecalciferol [1,25(OH)2D3] to rats [(1983) J. Biol. Chem. 258, 12783-12786]. Here we report that administration of 1,25(OH)2D3 to rats increases their levels of endogenous carboxylase substrate as well. Rats fed a vitamin D-deficient diet had highly elevated serum PTH levels while vitamin D-replete animals had undetectable levels. Furthermore, since PTH increases 1,25(OH)2D3 levels by stimulating renal 25-hydroxyvitamin D-1 alpha-hydroxylase, it is very likely that the stimulatory effects of PTH on the renal vitamin K-dependent carboxylating system are mediated by 1,25(OH)2D3.  相似文献   

10.
A series of analogs of 1,25-dihydroxycholecalciferol was obtained with an additional chiral center at the terminus of the aliphatic side chain (C-25). The analogs were obtained from (+)-(R)- and (-)-(S)-2-methylglycidols, by opening of the oxirane ring with the carbanions derived from vitamin D C23a,24- or C22-sulfones. The diastereomeric purity of the analogs was determined by high-performance liquid chromatography on a chiral stationary phase. The binding affinity of analogs for the calf thymus intracellular vitamin D receptor (VDR) was two orders of magnitude lower than that of the lead compound of this group, 24a,24b-dihomo-1,25-dihydroxycholecalciferol, and it was comparable to the affinity of analogs of 24-nor-1,25-dihydroxycholecalciferol. However, a twofold difference was observed for analogs diastereomeric at C-25 in their affinity for VDR. The diastereodifferentiation of the binding affinity was found to be specific for vitamin D vicinal 25,26-diols as it disappears for analogs where 26-hydroxyl, neighboring the C-25 chiral center, is replaced with methyl.  相似文献   

11.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

12.
Mouse skin fibroblasts in culture were used to study the regulation of 1,25-dihydroxycholecalciferol (1,25(OH)2D3) induced 24 hydroxylase (24-OH-ase) under the influence of 3 agents: (1) 24,25-Dihydroxycholecalciferol (24,25(OH)2D3), 62.5 10(-9) M, which led to a significant decrease in the 1,25(OH)2D3-induced 24-OH-ase, probably acted through a nuclear effect mediated by the 1,25(OH)2D3 receptor protein. (2) Triamcinolone acetonide (10(-6)M) which was found to increase the 24-OH-ase enhancement induced by 1.25 and 6.25 nM 1,25(OH)2D3 whereas it did not alter the effect of 31.2 nM 1,25(OH)2D3. (3) A factor which is likely to induce changes in the cell calcium transport or in the Ca pool sizes, i.e. a calcium channel blocker, nicardipine. The effect of 1.25 nM 1,25(OH)2D3 on 24-OH-ase activity was increased by nicardipine (20 microM) which was found to reduce the effect of 6.25 nM 1,25(OH)2D3. The rate of DNA synthesis (measured by [3H]thymidine incorporation) was increased after incubation of fibroblasts with 1,25(OH)2D3 (1.25 nM) plus triamcinolone acetonide (10(-6) M), although it was reduced by nicardipine in comparison with 1,25(OH)2D3 alone. So the effects of these agents on the 1,25(OH)2D3 induced 24-hydroxylase were shown to be independent of the rate of DNA synthesis.  相似文献   

13.
1alpha, 25-Dihydroxycholecalciferol (1,25-(OH)2D3), the active form of vitamin D, like other steroid hormones, initiates its action by binding to cytoplasmic receptors in target cells. Although the 1,25-(OH)2D3 receptor has been well studied in intestine, little information beyond sucrose gradient analyses is presently available from mammalian bone. We, therefore, employed primary cultures of mouse calvarial cells to characterize the mammalian receptor in bone. A hypertonic molybdate-containing buffer was found to protect receptor binding. On hypertonic sucrose gradients, the 1,25-(OH)2-[3H]D3 binder sedimented at 3.2 S. Scatchard analysis of specific 1,25-(OH)2[3H]D3 binding sites at 0 degrees C yielded an apparent Kd of 0.26 nM and an Nmax of 75 fmol/mg of cytosol protein. Competitive binding experiments revealed the receptor to prefer 1,25-(OH)2D3 greater than 25-(OH)-D3 = 1 alpha-(OH)-D3 greater than 24R,25-(OH)2D3; vitamin D3, dihydrotachysterol, sex steroids, and glucocorticoids exhibited negligible binding. As shown in other systems, the receptor could be distinguished from a 25-(OH)-[3H]D3 binder which sedimented at approximately 6 S. In summary, cultured mouse calvarial cells possess a macromolecule with receptor-like properties. This system appears to be an ideal model for the investigation of 1,25-(OH)2D3 receptor binding and action in mammalian bone.  相似文献   

14.
We have previously described a significant decrease in the positive cooperativity level and affinity of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] binding to its chick intestinal chromatin receptor induced in vitro by a physiological 10-fold molar excess of (24R)-25-dihydroxyvitamin D3 [24R,25(OH)2D3] [F. Wilhelm and A. W. Norman (1985) Biochem. Biophys. Res. Commun. 126, 496-501]. In this report, we have initiated a comparative study of the binding of 24R,25(OH)2[3H]D3 and 1,25(OH)2[3H]D3 to the the intestinal chromatin fraction obtained from vitamin D-replete birds. 24R,25(OH)2[3H]D3 specific binding to this chromatin fraction was characterized by a dissociation constant (Kd) of 34.0 +/- 6.4 nM, a positive cooperativity level (nH) of 1.40 +/- 0.13, and a capacity (Bmax) of 47 +/- 8 fmol/mg protein. The very low relative competitive index (RCI) of 24R,25(OH)2D3 (0.11 +/- 0.03%) for the 1,25(OH)2D3 binding site/receptor, as well as the inability of 1,25(OH)2D3 to displace 24R,25(OH)2D3 from its binding site at a physiological molar ratio of 1:10, strongly suggest the independence of 24R,25(OH)2D3 and 1,25(OH)2D3 binding sites. Stereospecificity of the 24R,25(OH)2D3 binding sites was attested by the displacement of only 45 +/- 6% of 24R,25(OH)2D3 specific binding by equimolar concentrations of 24S,25(OH)2D3. Collectively these results suggest the existence of a binding domain/receptor for 24,25(OH)2D3 in the chick intestine which is independent of the 1,25(OH)2D3 receptor.  相似文献   

15.
The yolk sac of the pregnant rat which functions as a true placenta is a target organ for vitamin D. This tissue can hydroxylate in position 24 both 25-hydroxy- and 1,25-dihydroxyvitamin D3 (25-OHD3 and 1,25-(OH)2D3). The present report describes an in vitro model for the study of 1,25-(OH)2D3 action on the further metabolism of 25-OH[3H]D3 and 1,25-(OH)2[3H]D3 by yolk sac. The tissue explants were preincubated with 1,25-(OH)2D3 for 18 h in a serum-free culture medium. Physiological concentrations of 1,25-(OH)2D3 were the most effective in stimulating (7.5-fold) the 1,25-(OH)2D3 24-hydroxylase, while the 25-OHD3 24-hydroxylase stimulation (4-fold) required a 1,25-(OH)2D3 concentration of 10(-7) M. The stimulating effect of 1,25-(OH)2D3 on the 1,25-(OH)2D3 24-hydroxylase was temperature-dependent, and, since its was inhibited by actinomycin D and cycloheximide, required de novo protein synthesis. 1,24,25-(OH)3D3, 25-OHD3, and 24,25-(OH)2D3 were 10- to 1000-fold less potent than 1,25-(OH)2D3 in inducing the 1,25-(OH)2D3 hydroxylase. Our results strongly suggest that 1,25-(OH)2D3 regulated the 1,25-(OH)2D3 24-hydroxylase by a receptor-mediated process. Furthermore, 1,25-(OH)2D3 at 10(-9) M induced within 4 h an increase of its own degradation and the formation of an as yet unidentified major 1,25-(OH)2[3H]D3 metabolite. We conclude that the yolk sac can participate in the regulation of 1,25-(OH)2D3 concentration in the fetoplacental unit.  相似文献   

16.
Plasma 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentration was shown to decrease during bed rest in several studies when baseline plasma 25-hydroxyvitamin D (25-OHD) concentration was sub-optimal. Dahl salt-sensitive female (S) rats, but not Dahl salt-resistant female (R) rats, demonstrated a 50% decrease in plasma 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) concentration after 28 days of hind limb unloading (HU, disuse model) during low salt intake (0.3%). We tested the vitamin D endocrine system response of female S rats to hind limb unloading during high salt intake (2%, twice that of standard rat chow to mimic salt intake in the USA). Hind limb unloading resulted in lower plasma 25-OHD3 concentrations in S-HU rats than in R-HU rats (P < 0.05) and greater urinary loss of 25-OHD3 by S-HU rats than by S rats (P < 0.05). Plasma 1,25-(OH)2D3 concentration of S-HU rats was half that of S rats, but was unchanged in R-HU rats. The association of low plasma 25-OHD concentration with decrease in plasma 1,25-(OH)2D concentration of hind limb unloaded rats and of bed rest participants (published studies) suggests that low vitamin D status might be a risk factor for decrease in plasma vitamin D hormone concentration during long-term immobilization or bed rest.  相似文献   

17.
The aim of this work was to evaluate the effects of 24,25-dihydroxyvitamin D3, 24,25(OH)2D3, on alkaline phosphatase (AP) and tartrate-resistant acid phosphatase (TRAP) activities in fetal rat calvaria cultures. These actions were compared with those of 1,25-dihydroxyvitamin D3, 1,25(OH)2D3, and 25-hydroxyvitamin D3, 25(OH)D3, in similar experimental conditions. At 10 min, 30 min and at 24 h incubation time, 1,25(OH)2D3 (10(-10)M) and 25(OH)D3 (10(-7) M) produced a significant increase in AP and TRAP activities compared to control group (without vitamin D metabolites). However, 24,25(OH)2D3 (10(-7) M) only produced effects on phosphatase activities similar to those produced by 1,25(OH)2D3 and 25(OH)D3, after 24 h incubation time. These findings suggest that 1,25(OH)2D3 and 25(OH)2D3 could carry out actions in minutes (nongenomic mechanism), while 24,25(OH)2D3 needs longer periods of time to perform its biological actions (genomic mechanism).  相似文献   

18.
To better understand the initial steps in the induction of intestinal Ca2+ transport by 1,25-dihydroxycholecalciferol [1,25(OH)2D3], we studied the early subcellular localization of 1,25(OH)2D3 in rat intestine. Vitamin D-deficient rats received 300 pmol of 1,25(OH)2[3H]D3 intravenously at 5 min to 4h before being killed. Cells homogenized in buffer of I = 90 mmol/litre were fractionated by centrifugation into a crude nuclear pellet, purified nuclei, Golgi and basal-lateral membranes, cytosol and a post-nuclear pellet. Nuclear purification was established by biochemical and morphological criteria and gave a yield of 32 +/- 2% (mean +/- S.E.M.; n = 21). Although re-establishment of Ca2+ uptake by Golgi is one of the earliest reported intestinal responses to 1,25(OH)2D3, no direct localization of 1,25(OH)2D3 to Golgi was detected. Purified nuclei had the highest specific radioactivity at all times studied, with nuclear localization detectable at 5 min and peak nuclear uptake at 1 h. Relative specific radioactivity of nuclei to cytosol increased from 5 min to 30 min, at which time equilibrium between cytosol and nucleus appeared to be attained. Nuclear uptake occurred in all cells from villus to crypt. Of total nuclear binding 10% was resistant to high ionic strength buffer (I = 365 mmol/litre); peak nuclear uptake was observed at 30 min in this buffer. This tight binding may represent the active fraction of 1,25(OH)2D3. These results indicate that localization of 1,25(OH)2D3 to rat intestinal nuclei precedes the observed Golgi-membrane effects and suggest the existence of high-affinity nuclear 1,25(OH)2D3-binding sites.  相似文献   

19.
This study was designed to investigate, in some detail, the relative effects of the hormonal form of vitamin D (1,25-dihydroxycholecalciferol) on duodenal Pb and Ca absorption as a function of dietary Pb level. When cholecalciferol-deficient chicks were chronically repleted with physiologic levels of 1,25-dihydroxycholecalciferol (1,25(OH)2D3), as the sole source of the vitamin, 203Pb and 47Ca absorption were enhanced over 4- and 8-fold, respectively. Ingestion of Pb during the repletion period had no significant effect on the intestinal Ca absorption response to 1,25-(OH)2D3 even at a very high dietary Pb level. The efficiency of intestinal 203Pb absorption was, however, significantly diminished by dietary Pb, in an apparent dose-dependent fashion. The results indicate that the extent to which systemic Ca homeostatic mechanisms influence intestinal Pb absorption is dependent, in large part, on Pb status.  相似文献   

20.
1. The affinities of the specific vitamin D plasma transport proteins for 25-hydroxycholecalciferol, 24R, 25-dihydroxycholecalciferol and 24S, 25-dihydroxycholecalciferol were studied in 34 vertebrate species. 2. Fish plasma proteins bound 25-hydroxycholecalciferol, 24R, 25-dihydroxycholecalciferol and 24S, 25-dihydroxycholecalciferol with equal efficiency. 3. Vitamin D transport proteins in birds and a monotreme bound 25-hydroxycholecalciferol more efficiently than 24R, 25-dihydroxycholecalciferol; in one bird the two seco-steroids were bound with equal efficiency. 4. Transport proteins from marsupial and placental mammals bound 24R, 25-dihydroxycholecalciferol more efficiently than 24S, 25-dihydroxycholecalciferol. 5. Twelve mammal transport proteins bound 25-hydroxycholecalciferol and 24R, 25-dihydroxycholecalciferol with equal efficiency, however, in six mammals 25-hydroxycholecalciferol was more efficiently bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号