首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A first study of the in vivo kinetic properties of primary metabolism of Penicillium chrysogenum is presented. Dynamic metabolite data have been generated by rapidly increasing the extracellular glucose concentration of cells cultivated under well-defined conditions in an aerobic glucose-limited chemostat followed by measurement of the fast dynamic response of the primary metabolite levels (glucose pulse experiment). These experiments were carried out directly in the chemostat as well as in a mini plug flow reactor (BioScope) outside the chemostat. The results of the glucose pulse experiments carried out in the chemostat and the Bioscope were highly similar. During the 90 s time window of the pulse experiment, the glucose consumption rate increased to a value twice as high as in the steady state, a much lower increase than observed for the fermenting yeast Saccharomyces cerevisiae under similar conditions. Although the observed metabolite patterns in P. chrysogenum were comparable to S. cerevisiae large differences in the magnitude of the dynamic behavior were observed between both organisms. During the pulse experiment the level of glycolytic and TCA cycle intermediates, and adenine nucleotides changed between two- and five-fold. Furthermore, a highly similar five-fold increase in the cytocolic NADH/NAD ratio could be calculated from two independent equilibrium assumptions (fructose 1,6 bis-phosphate to the pool of 2 and 3PG and oxaloacetate to fumarate with glutamate transaminase). It was also found that the C4 pool (aspartate, fumarate, and malate) became much more reduced due to this increase in NADH/NAD ratio. Equilibrium conditions were confirmed to exist in the hexose-P pool, the glycolysis between F16bP and 2+3PG and in the C4 pool of the TCA cycle (fumarate, malate, oxaloacetate and aspartate).  相似文献   

2.
Nitrogen regulation in tylosin production by Streptomyces fradiae NRRL 2702 was studied in chemostat culture using a soluble synthetic medium. The maximum value of specific tylosin formation rate ( q TYL) was 1·13 mg g−1 h−1 at the specific growth rate (μ) of 0·05 h−1, and q TYL decreased with increasing levels of the specific growth rate after reaching a rate of 0·1 h−1. The optimum conditions for tylosin formation were that the specific ammonium ion uptake rate ( q N) and μ were 0·13 mmol g−1 h−1 and 0·05 h−1, respectively. The specific formation rates of threonine dehydratase (TDT) and tylosin were repressed by high levels of specific ammonium ion uptake rate. This study showed the adaptation to chemostat cultures of the nitrogen regulation of tylosin fermentations.  相似文献   

3.
Anaerobic and aerobic chemostat cultures of Saccharomyces cerevisiae were performed at a constant dilution rate of 0.10 h(-1). The glucose concentration was kept constant, whereas the nitrogen concentration was gradually decreasing; i.e., the conditions were changed from glucose and energy limitation to nitrogen limitation and energy excess. This experimental setup enabled the glycolytic rate to be separated from the growth rate. There was an extensive uncoupling between anabolic energy requirements and catabolic energy production when the energy source was present in excess both aerobically and anaerobically. To increase the catabolic activity even further, experiments were carried out in the presence of 5 mM acetic acid or benzoic acid. However, there was almost no effect with acetate addition, whereas both respiratory (aerobically) and fermentative activities were elevated in the presence of benzoic acid. There was a strong negative correlation between glycolytic flux and intracellular ATP content; i.e., the higher the ATP content, the lower the rate of glycolysis. No correlation could be found with the other nucleotides tested (ADP, GTP, and UTP) or with the ATP/ADP ratio. Furthermore, a higher rate of glycolysis was not accompanied by an increasing level of glycolytic enzymes. On the contrary, the glycolytic enzymes decreased with increasing flux. The most pronounced reduction was obtained for HXK2 and ENO1. There was also a correlation between the extent of carbohydrate accumulation and glycolytic flux. A high accumulation was obtained at low glycolytic rates under glucose limitation, whereas nitrogen limitation during conditions of excess carbon and energy resulted in more or less complete depletion of intracellular storage carbohydrates irrespective of anaerobic or aerobic conditions. However, there was one difference in that glycogen dominated anaerobically whereas under aerobic conditions, trehalose was the major carbohydrate accumulated. Possible mechanisms which may explain the strong correlation between glycolytic flux, storage carbohydrate accumulation, and ATP concentrations are discussed.  相似文献   

4.
First, we report the application of stable isotope dilution theory in metabolome characterization of aerobic glucose limited chemostat culture of S. cerevisiae CEN.PK 113-7D using liquid chromatography-electrospray ionization MS/MS (LC-ESI-MS/MS). A glucose-limited chemostat culture of S. cerevisiae was grown to steady state at a specific growth rate (mu)=0.05 h(-1) in a medium containing only naturally labeled (99% U-12C, 1% U-13C) carbon source. Upon reaching steady state, defined as 5 volume changes, the culture medium was switched to chemically identical medium except that the carbon source was replaced with 100% uniformly (U) 13C labeled stable carbon isotope, fed for 4 h, with sampling every hour. We observed that within a period of 1 h approximately 80% of the measured glycolytic metabolites were U-13C-labeled. Surprisingly, during the next 3 h no significant increase of the U-13C-labeled metabolites occurred. Second, we demonstrate for the first time the LC-ESI-MS/MS-based quantification of intracellular metabolite concentrations using U-13C-labeled metabolite extracts from chemostat cultivated S. cerevisiae cells, harvested after 4 h of feeding with 100% U-13C-labeled medium, as internal standard. This method is hereby termed "Mass Isotopomer Ratio Analysis of U-13C Labeled Extracts" (MIRACLE). With this method each metabolite concentration is quantified relative to the concentration of its U-13C-labeled equivalent, thereby eliminating drawbacks of LC-ESI-MS/MS analysis such as nonlinear response and matrix effects and thus leads to a significant reduction of experimental error and work load (i.e., no spiking and standard additions). By coextracting a known amount of U-13C labeled cells with the unlabeled samples, metabolite losses occurring during the sample extraction procedure are corrected for.  相似文献   

5.
This article presents the dynamic responses of several intra- and extracellular components of an aerobic, glucose-limited chemostat culture of Saccharomyces cerevisiae to glucose and ethanol pulses within a time window of 75 sec. Even though the ethanol pulse cannot perturb the glycolytic pathway directly, a distinct response of the metabolites at the lower part of glycolysis was found. We suggest that this response is an indirect effect, caused by perturbation of the NAD/NADH ratio, which is a direct consequence of the conversion of ethanol into acetaldehyde. This effect of the NAD/NADH ratio on glycolysis might serve as an additional explanation for the observed decrease of 3PG, 2PG, and PEP during a glucose pulse. The responses measured during the ethanol pulse were used to evaluate the allosteric regulation of glycolysis. Our results confirm that FBP stimulates pyruvate kinase and suggest that this effect is pronounced. Furthermore, it appears that PEP does not play an important role in the allosteric regulation of phosphofructo kinase.  相似文献   

6.
The conclusion from two in vivo experiments is that a significant proportion of the lactic acid, normally formed by glycolysis from glycogen and held in the muscle cells following exhausting exercise of the anaerobic swimming muscle of the teleost fish Pleuronectes platessa L, is converted by gluconeogenesis to form glycogen in the recovering muscle.
In the first experiment a technique for measurement of [3H]glucose turnover in the plaice was developed and applied to measure turnover in resting and exhausted fish. It is concluded that insufficient glucose was moved through the circulation to account for the rate of glycogen formation observed in the recovering exhausted muscle.
In the second experiment, an intramuscular injection of [14C]lactate to exhausted fish revealed a direct uptake of [14C]lactate by the recovering muscle cells, and the incorporation of substantial proportions of lactate into the restored glycogen. Simultaneous use of [3H]-mannitol allowed measurement of the isotope distribution between extra- and intracellular spaces.  相似文献   

7.
The novel concept of isotopic dynamic 13C metabolic flux analysis (ID-13C MFA) enables integrated analysis of isotopomer data from isotopic transient and/or isotopic stationary phase of a 13C labeling experiment, short-time experiments, and an extended range of applications of 13C MFA. In the presented work, an experimental and computational framework consisting of short-time 13C labeling, an integrated rapid sampling procedure, a LC-MS analytical method, numerical integration of the system of isotopomer differential equations, and estimation of metabolic fluxes was developed and applied to determine intracellular fluxes in glycolysis, pentose phosphate pathway (PPP), and citric acid cycle (TCA) in Escherichia coli grown in aerobic, glucose-limited chemostat culture at a dilution rate of D = 0.10 h(-1). Intracellular steady state concentrations were quantified for 12 metabolic intermediates. A total of 90 LC-MS mass isotopomers were quantified at sampling times t = 0, 91, 226, 346, 589 s and at isotopic stationary conditions. Isotopic stationarity was reached within 10 min in glycolytic and PPP metabolites. Consistent flux solutions were obtained by ID-13C MFA using isotopic dynamic and isotopic stationary 13C labeling data and by isotopic stationary 13C MFA (IS-13C MFA) using solely isotopic stationary data. It is demonstrated that integration of dynamic 13C labeling data increases the sensitivity of flux estimation, particularly at the glucose-6-phosphate branch point. The identified split ratio between glycolysis and PPP was 55%:44%. These results were confirmed by IS-13C MFA additionally using labeling data in proteinogenic amino acids (GC-MS) obtained after 5 h from sampled biomass.  相似文献   

8.
In the present work LC-MS/MS was applied to measure the concentrations of intermediates of glycolysis and TCA cycle during autonomous, cell-cycle synchronized oscillations in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. This study complements previously reported oscillations in carbon dioxide production rate, intracellular concentrations of trehalose and various free amino acids, and extracellular acetate and pyruvate in the same culture. Of the glycolytic intermediates, fructose 1,6-bisphosphate, 2- and 3-phosphoglycerate, and phosphoenolpyruvate show the most pronounced oscillatory behavior, the latter three compounds oscillating out of phase with the former. This agrees with previously observed metabolic control by phosphofructokinase and pyruvate kinase. Although individually not clearly oscillating, several intermediates of the TCA cycle, i.e., alpha-ketoglutarate, succinate, fumarate, and malate, exhibited increasing concentration during the cell cycle phase with high carbon flux through glycolysis and TCA cycle. The average mass action ratios of beta-phosphoglucomutase and fumarase agreed well with previously determined in vitro equilibrium constants. Minor differences resulted for phosphoglucose isomerase and enolase. Together with the observed close correlation of the pool sizes of the involved metabolites, this might indicate that, in vivo, these reactions are operating close to equilibrium, whereby care must be taken due to possible differences between in vivo and in vitro conditions. Combining the data with previously determined intracellular amino acid levels from the same culture, a few clear correlations between catabolism and anabolism could be identified: phosphoglycerate/serine and alpha-ketoglutarate/lysine exhibited correlated oscillatory behavior, albeit with different phase shifts. Oscillations in intracellular amino acids might therefore be, at least partly, following oscillations of their anabolic precursors.  相似文献   

9.
AIMS: The aim was to demonstrate the use of a trehalase-overexpressing Saccharomyces cerevisiae strain grown on trehalose as a valuable tool in the studies of respiro-fermentative transition at a reduced scale. METHODS AND RESULTS: A trehalase-overexpressing strain was cultivated in synthetic medium on trehalose under aerobic conditions. This strain grew at a maximum specific growth rate of 0.16 h(-1) and showed a pure oxidative metabolism. Glucose pulse experiments were carried out in this system in order to quantify the short-term Crabtree effect. These data were then compared with glucose pulse experiments carried out in the conventional way with the wild-type strain in glucose-limited chemostats. Glucose-pulse experiments in aerobic batch cultures grown on trehalose led to a metabolic respiro-fermentative transition similar to the one observed in glucose-limited chemostats. CONCLUSIONS: This cultivation system allowed us to quantitatively mimic at the flask scale the Crabtree effect observed in conventional chemostat studies. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is of primary interest in S. cerevisiae studies in which: (i) the implementation of oxidative growth is required (as with studies of the Crabtree effect and heterologous protein production); (ii) small-scale culture systems are required (e.g. high-throughput mutant screening and isotopic labelling experiments).  相似文献   

10.
ABSTRACT. Phreatamoeba balamuthi is a free-living heterotrophic amoeba that lacks mitochondria. Metabolites of axenically-grown cells were characterized by natural-abundance 13C-NMR and 31P-NMR spectroscopy on acellular perchloric acid extracts. The amoebae were found to contain glycogen and trehalose as storage carbohydrates, together with putrescine and several amino acids, most prominently proline; we propose that proline and trehalose may serve in osmoregulation. Glycerophosphocholine and glycerophosphoethanolamine were present with their phosphomonoester derivatives, phosphocholine and phosphoethanolamine. Along with inorganic phosphate, inorganic pyrophosphate, nucleoside diphosphates, nucleoside triphosphates and NAD, P. balamuthi amoebae also contained unusual phosphoinositol diphosphates in large quantities (0.5 μmol/g wet cells).  相似文献   

11.
Well-nodulated soybean ( Glycine max L. Merr. cv. Akisengoku) plants were allowed to assimilate 13CO2. Plant cytosol and bacteroid fractions were isolated from nodules, and the kinetics of [13C]-labelling of soluble carbohydrates, organic acids and amino acids were investigated.
The concentrations of all metabolites, with the exception of trehalose and 3-hydroxy-butyrate, were 10- to 1000-fold higher in plant cell cytosol than in bacteroids. The major portion of trehalose was found in bacteroids and 3-hydroxybutyrate only in bacteroids. Sucrose was most highly labelled with 13C in nodules, and the levels and time-course of labelling of sucrose were in good agreement with those of respired CO2 from the nodules. The levels and time-courses of labelling of sucrose were closely similar in cytosol and bacteroids. Glucose was less labelled than sucrose and the level of labelling was consistently higher in cytosol than in bacteroids. The levels of [13C]-labelling of organic acids and amino acids in nodules were lower than those of sucrose and of respired CO2. Tricarboxylic acid cycle intermediates, particularly succinate, were considerably less labelled in bacteroids than in the cytosol. All amino acids detected were also much more rapidly labelled in the cytosol. The results are discussed in relation to the utilization and possible compartmentation of carbon substrates in nodule tissues.  相似文献   

12.
Abstract Actinomyces viscosus is a predominant microorganism in dental plaque. It is, just as the oral Streptococcus spp., a saccharolytic and aero-tolerant organism. We have investigated the effects of oxygen on the growth and metabolism of A. viscosus . To this end A. viscosus Ut 2 was grown in a glucose limited chemostat culture on a chemically defined medium ( D = 0.2 h−1) with exposure to variable amounts of oxygen. The Yglucose increased from 62.5 g · mol−1 under anaerobic conditions to 149 g · mol−1 under aerobic conditions, while, concomitantly, the carbon recovery from acidic fermentation products decreased from 75% to 7%. Addition of [14C]glucose to the chemostat showed that the glucose, which was not converted to acidic fermentation products, was instead converted to carbon dioxide or used for the production of biomass. Under aerobic and anaerobic conditions identical cytochrome spectra, containing only two cytochrome b -type absorption bands, were found. It was concluded that electron transport phosphorylation probably occurs both under aerobic and anaerobic conditions. Anaerobically, fumarate served as the electron acceptor, while the high growth yields observed under aerobic conditions are likely to be explained by citric acid cycle activity coupled to electron transport phosphorylation.  相似文献   

13.
Abstract A strain (WKW2) of Penicillium chrysogenum transformed with heterologous fungal acetamidase ( amd S) and bacterial β-galactosidase ( lac Z) was grown at a dilution rate of 0.17 h−1 (doubling time of approx. 4.1 h) for 1600 h in a glucose-limited culture. By the end of the experiment the original strain had been almost completely replaced by spontaneous, morphological mutants, but the acetamidase and β-galactosidase activities of the culture were essentially unaltered. Furthermore, when WKW2 and the non-transformed parental strain (NRRL1951) were grown together in glucose- or NH4+-limited chemostat cultures, neither strain had a selective advantage over the other. Thus, heterologous gene expression does not result in NRRL1951 having a selective advantage over WKW2. These results suggest that continuous flow culture systems could be used for efficient (and cost effective) production of recombinant proteins.  相似文献   

14.
ABSTRACT. Trypanosoma brucei bloodstream forms express a densely packed surface coat consisting of identical variant surface glycoprotein (VSG) molecules. This surface coat is subject to antigenic variation by sequential expression of different VSG genes and thus enables the cells to escape the mammalian host's specific immune response. VSG turnover was investigated and compared with the antigen switching rate. Living cells were radiochemically labeled with either 125I-Bolton-Hunter reagent or 35S-methionine, and immunogold-surface labeled for electron microscopy studies. The fate of labeled VSG was studied during subsequent incubation or cultivation of labeled trypanosomes. Our data show that living cells slowly released VSG into the medium with a shedding rate of 2.2 ± 0.6% h−1 (t1/2= 33 ± 9 h). In contrast, VSG degradation accounted for only 0.3 ± 0.06% h−1 (t1/2= 237 ± 45 h) and followed the classical lysosomal pathway as judged by electron microscopy. Since VSG uptake by endocytosis was rather high, our data suggest that most of the endocytosed VSG was recycled to the surface membrane. These results indicate that shedding of VSG at a regular turnover rate is sufficient to remove the old VSG coat within one week, and no increase of the VSG turnover rate seems to be necessary during antigenic variation.  相似文献   

15.
Rapidly dividing photoautotrophic cell suspensions from Chenopodium rubrum L. assimilated about 85 μmol CO2 (mg chlorophyll)−1 h−1. During the late stationary phase of culture growth, CO2 fixation rate was reduced to about 60 μmol CO2 (mg chlorophyll)−1 h−1. Actively dividing cells characteristically incorporated a smaller proportion of 14C into starch than cells from non-dividing stationary phases. In rapidly dividing cells, [14C]-turnover from free sugars, sugar-phosphates, organic and amino acids was substantially higher compared to non-dividing cells from stationary growth phase. Higher proportions of photosynthetically fixed carbon were channelled into proteins, lipids and structural components in actively dividing cells than in non-dividing cells. In the latter. 14C was preferentially channeled into starch, and a striking increase in starch accumulation was observed. The transfer of non-dividing, stationary growth-phase cells into fresh culture medium resulted in an increase in the maximum extractable activities of some enzymes involved in the glycolytic and dark respiratory pathways and in the citric acid cycle. In contrast, the maximum extractable activities of the chloroplastic enzymes, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.38) and NADP+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were highest after the cells had reached the stationary growth phase.  相似文献   

16.
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.  相似文献   

17.
Abstract A method proposed for estimating the rate of bacterial mortality in aquatic environments consists in following the disappearance of radioactive tracer from the macromolecular fraction of 3H-thymidine labeled natural assemblages of bacteria. The data presented in this paper offer a further technical validation of this procedure. Application of the method to North and Mediterranean Sea, estuaries, rivers and lakes yields first order mortality constant in the range 0.008–0.06 h−1. Mortality due to grazing by protozoans retained by 2 μm filtration range from 20 to 90% of the mortality detected by the method.  相似文献   

18.
Abstract: Metabolism of [U-13C5]glutamine was studied in primary cultures of cerebral cortical astrocytes in the presence or absence of extracellular glutamate. Perchloric acid extracts of the cells as well as redissolved lyophilized media were subjected to nuclear magnetic resonance and mass spectrometry to identify 13C-labeled metabolites. Label from glutamine was found in glutamate and to a lesser extent in lactate and alanine. In the presence of unlabeled glutamate, label was also observed in aspartate. It could be clearly demonstrated that some [U-13C5]glutamine is metabolized through the tricarboxylic acid cycle, although to a much smaller extent than previously shown for [U-13C5]glutamate. Lactate formation from tricarboxylic acid cycle intermediates has previously been demonstrated. It has, however, not been demonstrated that pyruvate, formed from glutamate or glutamine, may reenter the tricarboxylic acid cycle after conversion to acetyl-CoA. The present work demonstrates that this pathway is active, because [4,5-13C2]glutamate was observed in astrocytes incubated with [U-13C5]glutamine in the additional presence of unlabeled glutamate. Furthermore, using mass spectrometry, mono-labeled alanine, glutamate, and glutamine were detected. This isotopomer could be derived via the action of pyruvate carboxylase using 13CO2 produced within the mitochondria or from labeled intermediates that had stayed in the tricarboxylic acid cycle for more than one turn.  相似文献   

19.
The purpose of this study was to explore the role of glycogen and trehalose in the ability of Saccharomyces cerevisiae to respond to a sudden rise of the carbon flux. To this end, aerobic glucose-limited continuous cultures were challenged with a sudden increase of the dilution rate from 0.05 to 0.15 h(-1). Under this condition, a rapid mobilization of glycogen and trehalose was observed which coincided with a transient burst of budding and a decrease of cell biomass. Experiments carried out with mutants defective in storage carbohydrates indicated a predominant role of glycogen in the adaptation to this perturbation. However, the real importance of trehalose in this response was veiled by the unexpected phenotypes harboured by the tps1 mutant, chosen for its inability to synthesize trehalose. First, the biomass yield of this mutant was 25% lower than that of the isogenic wild-type strain at dilution rate of 0.05 h(-1), and this difference was annulled when cultures were run at a higher dilution rate of 0.15 h(-1). Second, the tps1 mutant was more effective to sustain the dilution rate shift-up, apparently because it had a faster glycolytic rate and an apparent higher capacity to consume glucose with oxidative phosphorylation than the wild type. Consequently, a tps1gsy1gsy2 mutant was able to adapt to the dilution rate shift-up after a long delay, likely because the detrimental effects from the absence of glycogen was compensated for by the tps1 mutation. Third, a glg1Deltaglg2Delta strain, defective in glycogen synthesis because of the lack of the glycogen initiation protein, recovered glycogen accumulation upon further deletion of TPS1. This recovery, however, required glycogen synthase. Finally, we demonstrated that the rapid breakdown of reserve carbohydrates triggered by the shift-up is merely due to changes in the concentrations of hexose-6-phosphate and UDPglucose, which are the main metabolic effectors of the rate-limiting enzymes of glycogen and trehalose pathways.  相似文献   

20.
Abstract: Cerebral formation of lactate via the tricarboxylic acid (TCA) cycle was investigated through the labeling of lactate from [2-13C]acetate and [1-13C]glucose as shown by 13C NMR spectroscopy. In fasted mice that had received [2-13C]acetate intravenously, brain lactate C-2 and C-3 were labeled at 5, 15, and 30 min, reflecting formation of pyruvate and hence lactate from TCA cycle intermediates. In contrast, [1-13C]glucose strongly labeled lactate C-3, reflecting glycolysis, whereas lactate C-2 was weakly labeled only at 15 min. These data show that formation of pyruvate, and hence lactate, from TCA cycle intermediates took place predominantly in the acetate-metabolizing compartment, i.e., glia. The enrichment of total brain lactate from [2-13C]acetate reached ∼1% in both the C-2 and the C-3 position in fasted mice. It was calculated that this could account for 20% of the lactate formed in the glial compartment. In fasted mice, there was no significant difference between the labeling of lactate C-2 and C-3 from [2-13C]acetate, whereas in fed mice, lactate C-3 was more highly labeled than the C-2, reflecting adaptive metabolic changes in glia in response to the nutritional state of the animal. It is hypothesized that conversion of TCA cycle intermediates into pyruvate and lactate may be operative in the glial metabolism of extracellular glutamate and GABA in vivo. Given the vasodilating effect of lactate on cerebral vessels, which are ensheathed by astrocytic processes, conversion of glutamate and GABA into lactate could be one mechanism mediating increases in cerebral blood flow during nervous activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号