首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High performance anion exchange chromatography on pellicular ion exchange resins under high pH conditions with detection of sugars using a pulsed amperometric detector has been developed as a method for the separation and analysis of reduced oligosaccharides liberated from mucins by alkaline borohydride treatment. Ovine, bovine and porcine submaxillary mucins were used as models to develop the method. Although neutral reduced di-to tetraoligosaccharides were poorly retained on the column, a variety of sialylated reduced oligosaccharides could be separated efficiently. Treatment of the samples with sialidase and rechromatography identified the sialylated compounds in the elution profile. A striking finding was the greatly delayed elution times given byN-glycolylneuraminic acid containing compounds in comparison with the correspondingN-acetylneuraminic acid containing analogues. The elution profiles for the product from the mucins closely corresponded to those expected for the major oligosaccharides from these mucins. The procedures described will be useful for analysing sialomucins on a microscale without resorting to radiolabelling procedures.  相似文献   

2.
Fu D  Zopf D 《Analytical biochemistry》1999,269(1):113-123
A sensitive and highly selective high-performance liquid chromatography (HPLC)-based method has been developed for the analysis of oligosaccharides in biological fluids. In this method, a sample of biological fluid, such as blood serum or urine, is filtered through a 10,000 molecular weight cutoff filter cartridge to remove large molecules such as proteins and lipids. The carbohydrates in the filtrate are then derivatized with 1-phenyl-3-methyl-5-pyrazolone (PMP) as described previously [Anal. Biochem. 180, 351-357, (1989)]. The derivatized carbohydrates are separated by reverse-phase HPLC and monitored by UV absorbance at 245 nm. Quantitative analysis of the carbohydrates can be achieved based on their integration values relative to a standard calibration curve. Since neutral and acidic carbohydrates can be separated by using Dowex 1-X8 anion exchange resin, this method can be used specifically to analyze neutral, acidic, and total carbohydrates in the biological fluids. Because PMP specifically reacts with reducing aldoses, interference from noncarbohydrate components present in the biological fluids is essentially eliminated. This method has proven to be highly sensitive, requiring as little as 5 pmol of analyte for reliable analysis. It has also been used successfully for pharmacokinetic analysis of carbohydrate drugs in human blood and urine samples.  相似文献   

3.
Complete carbohydrate composition analysis of glycoprotein hormones, their subunits, and oligosaccharides isolated from individual glycosylation sites can be accomplished using high-pH anion-exchange chromatography combined with pulsed amperometric detection. Neutral and amino sugars are analyzed from the same hydrolyzate by isocratic chromatography on a Dionex CarboPAC PA1 column in 16 mM NaOH. Sialic acid is quantified following mild hydrolysis conditions on the same column in 150 mM sodium acetate in 150 mM NaOH. Ion chromatography on a Dionex AS4A column in 1.8 mM Na(2)CO(3)/1.7 mM NaHCO(3); postcolumn, in-line anion micromembrane suppression; and conductivity detection can be used to quantify sulfate, a common component of pituitary glycoprotein hormone oligosaccharides. Mass spectrometric analysis before and after elimination of oligosaccharides from a single glycosylation site can provide an estimate of the average oligosaccharide mass, which facilitates interpretation of oligosaccharide composition data. Following release by peptide N-glycanase (PNGase) digestion and purification by ultrafiltration, oligosaccharides can be characterized by a high-resolution oligosaccharide mapping technique using the same equipment employed for composition analysis. Oligosaccharide mapping can be applied to the entire hormone, individual subunits, or individual glycosylation sites by varying PNGase digestion conditions or substrates. Oligosaccharide release by PNGase is readily monitored by SDS-PAGE. Site-specific deglycosylation can be confirmed by amino acid sequence analysis. For routine isolation of oligosaccharides, addition of 2-aminobenzamide at the reducing terminus facilitates detection; however, the oligosaccharide retention times are altered. Composition analysis is also affected as the 2-aminobenzamide-modified GlcNAc peak overlaps the fucose peak.  相似文献   

4.
Basic treatment of a biantennary complex-type sialyloligosaccharide, as well as its asialo form, was found to lead to the specific cleavage of 2-acetamido-2-deoxy-d-glucose (GlcNAc) from the reducing end. The resultant oligosaccharides were identical to those prepared by treatment with endo-β-glycosidase-M, which cleaves the glycosidic bond between two GlcNAc residues at the reducing end of N-linked oligosaccharides. In addition, mechanistic studies suggested that an elimination reaction in the reducing-end terminal GlcNAc residue causes this specific cleavage reaction.  相似文献   

5.
We found that 1-phenyl-3-methyl-5-pyrazolone reacts with reducing carbohydrates almost quantitatively to yield 2:1 compounds having no stereoisomers, which strongly absorb the uv light at 245 nm and are easily oxidizable on a glassy carbon electrode. Reverse-phase partition chromatography on a column of Capcell Pak C18 with uv or electrochemical detection allowed rapid analysis of aldoses and N-acetylhexosamines with the detection limit of 1 pmol or 100 fmol, respectively. This method proved especially useful for analysis of component monosaccharides of glycorproteins. It was also shown to be valid for separation of reducing oligosaccharides; maltodextrins with a degree of polymerization up to 19 were similarly derivatized and separated on this stationary phase.  相似文献   

6.
We have expanded on the suitability ofp-aminobenzoic acid ethyl ester as an ultraviolet-absorbing reagent [Wanget al., (1984) Anal Biochem 141:366–81] for the analysis of asparagine-linked oligosaccharides derived from glycoproteins. The oligosaccharides released from glycoproteins by hydrazinolysis/N-reacetylation were derivatized withp-aminobenzoic acid ethyl ester and the derivatives were purified and separated into neutral and acidic oligosaccharides on a PRE-SEP C18 cartridge. The acidic oligosaccharides could be further separated into a few species by high-voltage paper electrophoresis. p-Aminobenzoic acid ethyl ester derivatives of neutral oligosaccharides were analyzed by gel permeation chromatography on Bio-Gel P-4 and HPLC on a silica-based amide column. The elution profile and the proportion of the oligosaccharides were in agreement with literature values. The overall yield of oligosaccharides from glycoproteins was approximately 70%. Fifty pmol of oligosaccharide were detectable on Bio-Gel P-4 and 4–5 pmol on HPLC.Abbreviations HPLC high performance liquid chromatography - NABEE p-aminobenzoic acid ethyl ester - FAB-MS fast-atom bombardment mass spectrometry - (GlcNAc)2, (GlcNAc)3, (GlcNAc)4, (GlcNAc)5 and (GlcNAc)6 chito-oligosaccharides containing 2,3,4,5 and 6 residues ofN-acetylglucosamine  相似文献   

7.
Chromatographic methods were developed for the separation and characterization of acidic (sialylated) and neutral (asialo-complex and high-mannose) oligosaccharides released from glycoproteins with peptide N-glycosidase F. endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H using a carbohydrate analyzer (Dionex BioLC). All the carbohydrate separations were carried out on a polymeric pellicular anion-exchange column HPIC-AS6/CarboPac PA-1 (Dionex) using only two eluants namely, 0.5 M NaOH and 3% acetic acid/NaOH pH 5.5, which were mixed with water to generate various gradients. Developed conditions for quantitative detection of carbohydrates with pulsed amperometry were necessary to obtain steady baselines at 0.1-0.3 microA output with suitable sensitivity (less than 5 pmol) in separations employing a variety of acidic and alkaline sodium acetate gradients. Oligosaccharides released from heat-denatured and trypsin-treated glycoproteins were purified initially from large-scale digestion (greater than 0.1 g) by extraction of peptide material into phenol/chloroform and finally by ion-exchange chromatography of the acqueous phase. Oligosaccharides isolated from the peptide N-glycosidase digests of bovine fetuin, human transferrin and alpha 1-acid glycoprotein gave multiple peaks in each charge group in separations based on the charge content at pH 5.5. Alkaline sodium acetate gradients were developed to obtain oligosaccharide maps of the glycoproteins within 60 min, in which separated oligosaccharides eluted in the order of neutral, mono-, di-, tri- and tetra-sialylated species based on both charge, size and structure. Baseline separations were obtained with neutral oligosaccharide types but mixtures of high-mannose and complex types were poorly resolved. The high-mannose peaks were eliminated specifically from complex oligosaccharides by digesting with alpha-mannosidase. Treatment with beta-galactosidase, beta-N-acetylglucosaminidase and alpha-mannosidase resulted in a decrease of the oligosaccharide elution times corresponding to the number of sugar residues lost, the profile of changes was highly reproducible. In contrast, treatment with alpha-L-fucosidase, endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H resulted in an increase in their corresponding oligosaccharide retention times similar to the presence of an additional sugar residue. Conditions developed for separation of the reduced oligosaccharides and also a mixture of monosaccharide to oligosaccharide containing about 15 sugar residues within 30 min were useful in determining the effect of endo- and exo-glycosidases on porcine thyroglobulin oligosaccharides. Changes in elution time of the oligosaccharides following specific glycosidase digestions combined with methylation analysis provided a rapid and sensitive tool for confirmation of the carbohydrate primary structures present in thyroglobulin.  相似文献   

8.
Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose.  相似文献   

9.
Biologically active recombinant human follitropin has been expressed in Chinese hamster ovary cells. The carbohydrate chains of the recombinant glycoprotein hormone were enzymatically released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. The oligosaccharides were separated from the N-deglycosylated protein by gel-permeation chromatography on Bio-Gel P-100, and fractionated by a combination of FPLC on Mono Q and HPLC on Lichrosorb-NH2. The structures of the carbohydrate chains were determined by 500- or 600-MHz 1H-NMR spectroscopy. The following types of carbohydrates occur: monosialylated diantennary (10%), disialylated diantennary (43%), disialylated tri-antennary (5%), trisialylated tri-antennary (13%), trisialylated tri'-antennary (8%), and tetrasialylated tetraantennary (12%) N-acetyllactosamine type of carbohydrate chains, all bearing exclusively alpha 2-3-linked N-acetylneuraminic acid (Neu5Ac). Previously, for pituitary follitropin mono-, di-, tri-, tri'-, and tetra-antennary oligosaccharides containing alpha 2-3- as well as alpha 2-6-linked Neu5Ac residues were reported. The bisecting GlcNAc residues present in native follitropin were not detected in the recombinant glycoprotein. Of the oligosaccharides 29% have an alpha 1-6-linked Fuc residue at the asparagine-bound GlcNAc, whereas this amount is about 50% in pituitary follitropin. In some of the tri-, tri'- and tetra-antennary oligosaccharide fractions small amounts (less than 5%) of compounds were detected having one or more additional N-acetyllactosamine units.  相似文献   

10.
Four oligosaccharide fractions were isolated and purified from the kidney of goats affected with beta-mannosidosis by repeating Bio-Gel P-2 column chromatography. The structural characterization of the purified oligosaccharide fractions (oligosaccharides A, B, C1,2, and D) included sugar composition analysis by gas chromatography, sugar sequence analysis by mass spectrometry of their permethylated alditols, and by methylation analysis as well as anomeric configuration studies by exoglycosidase digestions. Oligosaccharides A and B were the major oligosaccharides accumulating in the kidney and were elucidated as Man beta 1-4GlcNAc and Man beta 1-4GlcNAc beta 1-4GlcNAc, respectively (Matsuura, F., Laine, R. A., and Jones, M. Z. (1981) Arch. Biochem. Biophys. 211, 485-493). Oligosaccharide C1,2 was a mixture of two tetrasaccharides and oligosaccharide D was a pentasaccharide. The proposed structures are: oligosaccharide C1, Man beta 1-4GlcNAc beta 1-4Man beta 1-4GlcNAc; oligosaccharide C2, Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc; oligosaccharide D, Man beta 1-4GlcNAc beta 1-4Man beta 1-4GlcNAc beta 1-4GlcNAc. Tetrasaccharide C1 and pentasaccharide D are heretofore undiscovered oligosaccharides. There is no precedent for these structures in glycoproteins or other glycoconjugates. One possibility which accounts for the presence of oligosaccharide C1 and D is that a bisecting N-acetylglucosamine (the beta-N-acetylglucosamine residue linked at the C-4 position of the beta-mannosyl residue of the trimannosyl core of the asparagine-linked sugar chains) is linked by a beta-mannosyl residue. Moreover, the detection of oligosaccharides containing two N-acetylglucosamine residues at the reducing terminus, together with those containing a single N-acetylglucosamine residue, is further corroboration of species-specific differences in glycoprotein catabolic pathways (Hancock, L. W., and Dawson, G. (1984) Fed. Proc. 43, 1552) or in glycoprotein structures.  相似文献   

11.
A convenient method for the routine measurement of histamine (HA) in biological samples was developed. This method does not require any preliminary purification or concentration of HA, and features high sensitivity, specificity, and reliability. The method consists of the direct application of the acid-deproteinized sample to high-performance liquid chromatography on a sulfonated polystyrene column with detection by means of a postcolumn fluorogenic reaction with o-phthaladehyde. The detection limit was found to be 0.1 pmol (signal-to-noise ratio = 3). The coefficient of variation for measurements of 10 pmol of standard histamine was 1.1%. Each chromatography takes only 10 min and therefore more than 50 samples can be measured in a day. The high sensitivity of the method allows it to be applied even to samples of very low HA concentration such as human plasma without any procedure for concentration of the sample, and further, only 0.1 ml of the sample is necessary for determination. The method was applied to compare the HA levels of the whole blood and plasma of man and various animals. Applications of the method to the supernatant of rat peritoneal mast cell incubates and to extracts of mouse brain and stomach are also described.  相似文献   

12.
Lewis a and Lewis x oligosaccharides Gal beta 3(Fuc alpha 4)GlcNAc beta 3Gal beta 4Glc and Gal beta 4(Fuc alpha 3)GlcNAc beta 3Gal beta 4Glc are easily isolated as a mixture from biological fluids, including human milk. However, because they behave almost identically in most chromatographic systems, it is difficult to have each of them as a pure compound. Incidentally, we found that they were easily separated by HPLC as glycosynthons [Gal beta 3(Fuc alpha 4)GlcNAc beta 3Gal beta 4Glc-Glp-beta Ala-OBzl and Gal beta 4(Fuc alpha 3)GlcNAc beta 3Gal beta 4Glc-Glp-beta Ala-OBzl] after substitution of the terminal reducing sugar by a short peptide (pyroglutamyl-beta alanyl-O-benzyl ester) in a one-pot two-step reaction (Carbohydr. Lett. 1 (1995) 269; Bioconjug. Chem. 9 (1998) 268). Such glycosynthons are easily either converted back to native Lewis a and Lewis x oligosaccharides upon hydrazinolysis or used to synthesize glycoconjugates, such as glycoclusters, glycopeptides, glycooligonucleotides, glycosylated polymers or glycosylated matrices for therapeutic or analytical purposes.  相似文献   

13.
A humanized IgG antibody (D1.3) which retains murine complementarity determining regions specific for the antigen lysozyme has been expressed in CHO-DUKX cells. Heavy and light chain containing plasmids were co-transfected into CHO-DUKX cells and stable clones were grown in DMEM/F12 medium supplemented with 5% foetal calf serum. D1.3 antibody was purified from culture supernatants by Protein G chromatography. With the recombinant D1.3 antibody as a model, this cell culture system was shown to glycosylate the IgG Fc region in a similar manner to IgG isolated from serum. The neutral, core fucosylated biantennary oligosaccharides found are present in serum IgG and no novel carbohydrate sequences were detected. The degree of terminal agalactosylation was also similar to normal serum, in contrast to the increased levels found in rheumatoid serum. Furthermore, those oligosaccharides which lack only one terminal Gal are exclusively galactosylated on the GlcNAc(β1,2) Man(α1,6) Man(β1,4) antenna. Unambiguous identification of the exact glycosylation pattern of the antibody was carried out by a combination of specific exoglycosidase digestions, gel permeation chromatography of 2-aminobenzamide derivatives, high pH anion exchange chromatography and methylation analysis followed by gas–liquid chromatography-mass spectrometry. Abbreviations: CDR, complementarity determining region; CHO, chinese hamster ovary; GPC, gel permeation chromatography; 2-AB, 2-aminobenzamide; HPAEC-PAD, high pH anion exchange chromatography with pulsed amperometric detection; GC-MS, gas chromatography with mass spectrometry analysis; PNGase F, peptide-N-glycosidase F; PGC, porous graphitized carbon column; RAAM, reagent array analysis method; NeuAc: N-acetylneuraminic acid; NeuGc: N-glycolylneuraminic acid This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
Carbohydrate-protein interactions play important biological roles in biological processes. But there is a lack of high-throughput methods to elucidate recognition events between carbohydrates and proteins. This paper reported a convenient and efficient method for preparing oligosaccharide microarrays, wherein the underivatized oligosaccharide probes were efficiently immobilized on aminooxyacetyl functionalized glass surface by formation of oxime bonding with the carbonyl group at the reducing end of the suitable carbohydrates via irreversible condensation. Prototypes of carbohydrate microarrays containing 10 oligosaccharides were fabricated on aminooxyacetyl functionalized glass by robotic arrayer. Utilization of the prepared carbohydrate microarrays for the characterization of carbohydrate-protein interaction reveals that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. The limit of detection (LOD) for lectin ConA on the fabricated carbohydrate microarrays was determined to be approximately 0.008 microg/mL. Inhibition experiment with soluble carbohydrates also demonstrated that the binding affinities of lectins to different carbohydrates could be analyzed quantitatively by determining IC(50) values of the soluble carbohydrates with the carbohydrate microarrays. This work provides a simple procedure to prepare carbohydrate microarray for high-throughput parallel characterization of carbohydrate-protein interaction.  相似文献   

15.
Aryl-N-acetyl-alpha-galactosaminides (aryl-GalNAc) are acceptor substrates for UDP-Gal:alpha-GalNAc beta 1-3 galactosyltransferase and, in vivo, aryl-GalNAc have been shown to inhibit O-linked oligosaccharide biosynthesis (Kuan et al., J. Biol. Chem. 264, 19271, 1989). Since aryl-GalNAc, appears to enter viable cells and serve as an acceptor for O-glycosylation enzymes, the recovery and characterization of the aryl-oligosaccharides from cell culture medium may reflect cellular pattems of O-glycosylation. To pursue this possibility, the following paranitrophenyl-linked oligosaccharide standards were enzymatically synthesized and characterized by 1H-NMR: Gal beta 1-3(GlcNAc beta 1-6)Gal-NAc alpha-pNp; Gal beta 1-3(Gal beta 1-4GlcNAc beta 1-6)GalNAc alpha-pNp; SA alpha 2-3Gal beta 1-3(SA alpha 2-3Gal beta 1-4GlcNAc,beta 1-6)GalNAc alpha-pNp; SA alpha 2-3Gal beta 1-3GalNAc alpha-pNp. As a model system, MDAY-D2 lymphoid tumour cells were cultured for various periods in medium containing 2 mM GalNAc alpha-pNp. The secreted aryl-oligosaccharides were separated by Biogel P2 chromatography and DEAE HPLC, followed by further fractionation of the disialyl oligosaccharides on an Ultrahydrogel HPLC column. Absorbance of the paranitrophenyl aryl constituent at 303 nm allowed detection at the 10 pmol level and provided a relatively specific means of following the oligosaccharides. MDAY-D2 cells produced disialylated aryl-oligosaccharides at a rate of 20 pmol/h/10(6) cells with a half-time of transit to the cell surface of 13.6 min, a rate consistent with their movement from the Golgi to the cell surface by bulk flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
O-Linked glycans were isolated from human skim milk mucins or mucin-derived high-molecular weight glycopeptides and fractionated by anion exchange chromatography into neutral and acidic alditols. Major oligosaccharides contained in the acidic fraction were purified by high performance liquid chromatography and structurally characterized by a combination of fast atom bombardment mass spectrometry, methylation analysis and 500 MHz 1H-nuclear magnetic resonance spectroscopy. The structural aspects exhibited by these major species in the acidic fraction resemble those established previously for the neutral oligosaccharides from human skim milk mucins: 1) the size of the alditols varies from tri- to decasaccharides, 2) the core structure is of the ubiquitous type 2, 3) the backbone sequences are of the poly-N-acetyllactosamine type with a particular preponderance of linearly extended GlcNAc beta(1-3)Gal (major) or GlcNAc beta(1-6)Gal units (minor).  相似文献   

17.
Structures of the asparagine-linked sugar chains of laminin   总被引:13,自引:0,他引:13  
This investigation describes the isolation and characterization of oligosaccharides of the basement membrane glycoprotein, laminin. Pronase-released glycopeptides of isolated laminin, from a mouse Engelbreth-Holm-Swarm tumor, were fractionated using a combination of gel permeation chromatography and Con A-Sepharose affinity chromatography. The glycopeptides were analyzed for sugar linkage patterns by methylation analysis. Glycopeptides and hydrazine-released oligosaccharides were further analyzed using endo-beta-galactosidase, endo-beta-N-acetylglucosaminidase H and specific exoglycosidases in conjunction with calibrated gel permeation chromatography. Based on these experiments, murine tumor laminin was shown to contain asparagine-linked oligosaccharides with the following structures: bi-, tri- and tetraantennary complex-type oligosaccharides; polylactosaminyl side chains containing Gal(beta 1----4)GlcNAc(beta 1----3) repeating units attached to the trimannose core portion of the bi-, tri- and tetraantennary complex-type oligosaccharides; unusual complex-type oligosaccharides terminated at the nonreducing end with sialic acid, alpha-galactose, beta-galactose and beta-N-acetylglucosamine; alpha-galactosyl residues linked to N-acetyllactosamine sequences; high-mannose-type oligosaccharides. These results, in conjunction with analytical data, indicate that most of the carbohydrate of this laminin is N-linked to asparagine and that there are about 43 such N-linked oligosaccharides per laminin molecule.  相似文献   

18.
While the structure of the major oligosaccharide of Japanese quail ovomucoid was reported earlier (Hase, S. et al. (1982) J. Biochem. 91, 735-737), the structures of the minor oligosaccharide units were investigated for the first time in the present studies. For this purpose, the glycans of the protein were liberated from the polypeptide chain by hydrazinolysis. After N-acetylation, the reducing ends of the oligosaccharides obtained were coupled with 2-aminopyridine, and then the resulting fluorescent derivatives were purified by Bio-Gel P-2 column chromatography and reversed-phase HPLC. The chemical structures of two minor oligosaccharide units were determined with the aid of exoglycosidases, and by methylation analysis and Smith degradation. The results demonstrated that the ovomucoid contains the following two monoantennary glycans: Man alpha 1-6(Gal beta 1-4GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc and Gal beta 1-4GlcNAc beta 1-2Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc. The latter structure was not predicted by the classical metabolic pathway for the N-glycans to be formed. The structures of three additional minor heterosaccharides were deduced from their elution positions on HPLC together with the results of determination of their molecular sizes and the HPLC elution positions of their enzymatic degradation products. It is noteworthy that for the latter procedure for the estimation of the structures of oligosaccharides only minute quantities of glycans (several hundreds pmol) are required.  相似文献   

19.
A general strategy has been developed for determining the structural class (oligomannose, hybrid, complex), branching types (biantennary, triantennary, etc.), and molecular microheterogeneity of N-linked oligosaccharides at specific attachment sites in glycoproteins. This methodology combines mass spectrometry and high-performance anion-exchange chromatography with pulsed amperometric detection to take advantage of their high sensitivity and the capability for analysis of complex mixtures of oligosaccharides. Glycopeptides are identified and isolated by comparative HPLC mapping of proteolytic digests of the protein prior to, and after, enzymatic release of carbohydrates. Oligosaccharides are enzymatically released from each isolated glycopeptide, and the attachment site peptide is identified by fast atom bombardment mass spectrometry (FAB-MS) of the mixture. Part of each reaction mixture is then permethylated and analyzed by FAB-MS to identify the composition and molecular heterogeneity of the carbohydrate moiety. Fragment ions in the FAB mass spectra are useful for detecting specific structural features such as polylactosamine units and bisecting N-acetylhexosamine residues, and for locating inner-core deoxyhexose residues. Methylation analysis of these fractions provides the linkages of monomers. Based on the FAB-MS and methylation analysis data, the structural classes of carbohydrates at each attachment site can be proposed. The remaining portions of released carbohydrates from specific attachment sites are preoperatively fractionated by high-performance anion-exchange chromatography, permethylated, and analyzed by FAB-MS. These analyses yield the charge state and composition of each peak in the chromatographic map, and provide semiquantitative information regarding the relative amounts of each molecular species. Analytically useful data may be obtained with as little as 10 pmol of derivatized carbohydrate, and fmol sensitivity has been achieved. The combined carbohydrate mapping and structural fingerprinting procedures are illustrated for a recombinant form of the CD4 receptor glycoprotein.  相似文献   

20.
An array of maleimide-activated mono- and oligosaccharides were synthesized to permit site-specific glycosylation of cysteine-containing peptides and proteins. Maleimide-activated monosaccharides, in which the native alpha- or beta-O-glycosidic linkages found for nonreducing terminal sugars of native glycoproteins are preserved, were prepared using 2'-aminoethyl glycosides as the key intermediates. In addition, a native high-mannose type oligosaccharide, Man(9)GlcNAc(2)Asn, was converted into its maleimide-activated form by taking advantage of the existing amino group in the Asn portion. The application of these maleimide-activated carbohydrates was exemplified by the site-specific glycosylation of a 36-mer HIV-1 gp41 peptide, T20, which is a potent inhibitor against HIV infection. The chemoselective ligation was found to be rapid, highly efficient, and essentially quantitative. Tagging the biologically active peptide with a mannose and/or oligomannose moiety will be useful for targeting the drug to macrophage and dendritic cells, which are primary targets for HIV-1 infection and are expressing mannose- and oligomanose-specific receptors on their surface. In combination with site-specific mutagenesis, the maleimide-activated carbohydrates can serve as generally applicable tags for site-specific glycosylation of proteins via the highly efficient maleimide-thiol ligation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号