首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of insulin on glycogen metabolism in isolated catfish hepatocytes   总被引:1,自引:0,他引:1  
Insulin effect on carbohydrate metabolism in catfish hepatocytes consisted of a significant decrease of cell glycogen concentration both in the absence and in the presence of glucose in the medium. The hormone did not influence either the output of glucose from the cell or the intracellular glucose level. Experiments with radioactive glucose showed a very low uptake of the sugar by the hepatocytes; correspondingly the incorporation of radioactivity into glycogen was very low and not influenced by insulin. The glycogen content in catfish liver cells was influenced by the hormone in the opposite way to rat liver cells.  相似文献   

2.
A histologic and electron microscopic study was made on selected organs from channel catfish Ictalurus punctatus (Rafinesque) fingerlings that were experimentally infected with channel catfish virus (CCV). Histopathology was characterized by necrosis and haemorrhage in kidney and liver, and haemorrhage in the spleen and gastrointestinal tract. Virus replication occurred in nuclei of cells in the kidney, liver and spleen. Intranuclear inclusion bodies consisting of geometric crystalline arrays and lamellar structures were associated with virus replication.  相似文献   

3.
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.  相似文献   

4.
A 2.5 kb full-length cDNA clone of a channel catfish (Ictalurus punctatus) Mx gene was obtained using RACE (rapid amplification of cDNA ends) polymerase chain reaction (PCR) from RNA extracted from the liver of poly I:C stimulated channel catfish. The gene consists of an open reading frame of 1905 nucleotides encoding a 635 amino acid protein. The predicted protein is 72.5 kDa and contains the dynamin family signature, a tripartite GTP binding motif and a leucine zipper, characteristic of all known Mx proteins. The catfish Mx protein exhibited 79% identity with perch Mx and between 71% and 74% identity with the three Atlantic salmon and the three rainbow trout Mx proteins. Mx mRNA was constitutively expressed in channel catfish ovary (CCO) cells, but in higher quantities in response to poly I:C treatment. Mx was induced in channel catfish following injection with channel catfish virus (CCV) and poly I:C.  相似文献   

5.
实验以杂交黄颡鱼(Pelteobagrus fulvidraco)和普通黄颡鱼幼鱼为实验对象, 拟通过8周的投喂生长和低氧胁迫实验, 比较研究杂交黄颡鱼与普通黄颡鱼的生长性能及耐低氧抗逆性。投喂生长实验: 经过8周的养殖, 杂交黄颡鱼平均体重为(19.60±0.88) g/尾, 显著高于普通黄颡鱼平均体重为(15.74±0.42) g/尾(P<0.05), 杂交黄颡鱼幼鱼较普通黄颡鱼幼鱼体重生长快24.52%; 杂交黄颡鱼幼鱼存活率为(87.78±1.92)%, 显著高于普通黄颡鱼幼鱼存活率(67.78±1.92)% (P<0.05), 杂交黄颡鱼幼鱼比普通黄颡鱼幼鱼存活率高 29.51%; 杂交黄颡鱼的饲料系数为1.18±0.14, 普通黄颡鱼饲料系数为1.36±0.21。低氧胁迫实验: 同时将杂交黄颡鱼和普通黄颡鱼置于在溶氧量(1.48 ± 0.27) mg/L的水体中, 分别在低氧胁迫0、6h、12h和24h后, 检测血清和肝脏中抗氧化酶活性以及脑和肝脏中缺氧诱导基因(HIF-1α)的相对表达量发现: 杂交黄颡鱼和普通黄颡鱼血清和肝脏中乳酸脱氢酶(LDH)活性、超氧化物歧化酶(SOD)活性和过氧化氢酶(CAT)活性在低氧胁迫后 6h以及总抗氧化能力(T-AOC)在低氧胁迫后 12h较低氧胁迫 0均出现显著性变化(P<0.05)且在低氧胁迫6h、12h和24h杂交黄颡鱼抗氧化酶活性均高于普通黄颡鱼; 杂交黄颡鱼和普通黄颡鱼脑和肝脏中缺氧诱导基因(HIF-1α)的相对表达量均在低氧胁迫后出现显著性上升(P<0.05)且在低氧胁迫6h、12h和 24h杂交黄颡鱼缺氧诱导基因(HIF-1α)的相对表达量均高于普通黄颡鱼。从无氧代谢能力、抗氧化能力以及缺氧诱导基因相对表达量3方面分析表明杂交黄颡鱼和黄颡鱼低氧胁迫短时间均具有一定的低氧耐受能力但随着胁迫时间延长均会出现氧化损伤且杂交黄颡鱼的耐低氧能力要显著性高于普通黄颡鱼。  相似文献   

6.
1. Some of the physical, chemical and kinetic properties of catfish liver lipogenic enzymes (acetyl-CoA carboxylase and fatty acid synthetase) were investigated. 2. The liver lipogenic enzymes of catfish exhibited maximal activity at 37 degrees C, even though these fish usually live at temperatures not above 24 degrees C. 3. The activity of the lipogenic enzymes of catfish liver was always low, regardless of the proportions of lipids or carbohydrates in the diet and could not be raised by insulin administration. 4. Under the conditions of the experiments, catfish liver fatty acid synthetase produced more stearate than palmitate and no myristate.  相似文献   

7.
采用硫酸铵盐析从嗜麦芽假单胞菌培养物中提取其胞外产物,通过腹腔注射方式,进行了嗜麦芽假单胞菌(P.maltophilia)胞外产物对斑点叉尾(Ictalurus punctatus)损伤的系统病理学研究。结果表明,嗜麦芽假单胞菌胞外产物具有较强的毒力,对斑点叉尾(42.5±4.4)g的半致死剂量(LD50)为3.21mg蛋白/kg体重。病鱼出现神经症状,腹部和下颌充血、出血,腹部膨大,腹腔内充满大量淡黄色或带血的腹水,胃肠道黏膜充血、出血,肠套叠,肝、脾、肾肿大等临床病变。组织学病变主要表现为全身多组织、器官水肿,出血、变性、坏死以及炎症反应,特别是脑、骨骼肌、肝、脾、肾和胃肠道的损伤较为严重。超微结构观察发现病鱼肝、脾、肾和骨骼肌等器官的细胞的超微结构均有较为严重的破坏,线粒体肿胀,嵴断裂或溶解消失,呈空囊状,内质网扩张,细胞核变形,染色质溶解或固缩;研究中还发现嗜麦芽假单胞菌胞外产物可致淋巴细胞凋亡,脾和肾间质内淋巴细胞均表现为细胞核染色质浓缩边移,或核固缩成一个或数个团块凝聚在核膜周边,形成凋亡小体。    相似文献   

8.
Exposure of perfused liver of walking catfish (Clarias batrachus) to hypotonicity (-80 mOsmol/L) caused swelling of liver cells as evidenced by the increase in liver mass by 11.5%, and inhibition of [(3)H]leucine release (as a measure of proteolysis) by 37% from the radiolabeled perfused liver. Whereas, exposure of perfused liver to hypertonicity (+80 mOsmol/L) caused shrinkage of liver cells as evidenced by the decrease in liver mass by 10.4%, and stimulation of [(3)H]leucine release by 24%. Infusion of amino acids such as glutamine plus glycine (2 mM each) also caused increase in liver cell volume as evidenced by the increase in liver mass by 8.9%, and inhibition of [(3)H]leucine release by 29%. Adjustment of anisotonicity of the media without changing the NaCl concentration in the media had almost similar effects on proteolysis in the perfused liver. A direct correlation of cell volume changes or hydration status of liver cells with that of proteolysis was observed in the perfused liver regardless of whether the cell volume increase/decrease was evoked by anisotonic perfusion media or by the addition of amino acids. Thus, it appears that the increase/decrease in hepatic cell volume could be one of the important modulators for adjusting the autophagic proteolysis in walking catfish probably to avoid the adverse affects of osmotically induced cell volume changes, to preserve the hepatic cell function and for proper energy supply under osmotic stress. This is the first report of cell volume-sensitive changes of autophagic proteolysis in hepatic cells of any teleosts.  相似文献   

9.
The influences of spawning and season on lipid content, lipid classes, and fatty acid composition were assessed in ovary and liver of wild and cultured Japanese catfish (Silurus asotus). The lipid content (7.3+/-1.6 g/100 g wet wt.) of ovary from wild catfish at spawning was higher than that at post-spawn. However, no influence of spawning on the lipid content of liver was observed. Docosahexaenoic acid [DHA, C22:6(n-3)] in ovary lipids was 12.3+/-0.5% of total fatty acids. The percentage of n-7 monounsaturated fatty acids in triacylglycerol from the ovary and liver in the spawning season was high. Percentages of C22:6(n-3) in phosphatidylcholine and phosphatidylethanolamine from ovary were higher during spawning than after spawning. No significant differences were observed in the lipid content of ovary and liver from cultured catfish between seasons (summer vs. winter). Content of arachidonic acid (C20:4n-6) in ovary and liver from cultured catfish was higher in summer than in winter. There were differences in lipid classes of ovary and liver by spawning and season. These results suggest that the lipid metabolism in Japanese catfish is greatly influenced by spawning and season.  相似文献   

10.
11.
Major plasma fibronectin from Japanese catfish was isolated using affinity chromatography, and the fibronectin was digested with thermolysin. Peptide sequences of the fragments were obtained by peptide sequencer. Complete fibronectin cDNA was obtained from Japanese catfish liver cells using 5'-rapid amplification of cDNA end (RACE) and 3'-RACE based on the peptide sequences. It consists of a 6885 bp open reading frame, which is putatively translated to a protein of 2295 amino acids resides. The catfish fibronectin has 12 type-I modules, 2 type-II modules and 15 type-III modules, and variable sites V and lacks both EIIIA and EIIIB sites. Homology of the entire amino acids residues of catfish fibronectin with those of mammals (Homo sapiens, Rattus norvegicus, Bos taurus) is only 47-48% and 57% with that of Danio rerio. However, amino acid sequence of type-I module 3 and type-I module12 are highly conserved and homology exceeds 80% with corresponding regions of the mammals, Xenopus laevis and fish species (Silurus asotus and D. rerio). Phylogenetic analysis indicates that only type-I module 4 shows a different pattern of phylogenetic tree. One major fibronectin mRNA was detected in whole liver and hepatocytes by northern hybridization, however, five to six other bands were also detected in both samples.  相似文献   

12.
The ability of catfish glucagon and glucagon-like peptide to bind and activate mammalian glucagon receptors was investigated. Neither catfish peptide binds to glucagon receptors of rat liver, hypothalamus or pituitary. Neither stimulates adenylate cyclase activity in liver membranes. Catfish glucagon fails to activate adenylate cyclase in hypothalamic or pituitary membranes in contrast to mammalian glucagon. However, catfish glucagon-like peptide does stimulate hypothalamic and pituitary adenylate cyclase (EC50 approximately 1 pM) possibly through mammalian glucagon-like peptide receptors.  相似文献   

13.
Ceruloplasmin is a serum ferroxidase that carries more than 90% of the copper in plasma and has documented roles in iron homeostasis as well as antioxidative functions. In our previous studies, it has been shown that the ceruloplasmin gene is strongly up-regulated in catfish during challenge with Edwardsiella ictaluri. However, little is known about the function of this gene in teleost fish. The objective of this study, therefore, was to characterize the ceruloplasmin gene from channel catfish, determine its genomic organization, profile its patterns of tissue expression, and establish its potential for physiological antioxidant responses in catfish after bacterial infection with E. ictaluri and iron treatment. The genomic organization suggested that the catfish ceruloplasmin gene had 20 exons and 19 introns, encoding 1074 amino acids. Exon sizes of the catfish ceruloplasmin gene were close to or identical with mammalian and zebrafish homologs. Further phylogenetic analyses suggested that the gene was highly conserved through evolution. The catfish ceruloplasmin gene was mapped to both the catfish physical map and linkage map. The catfish ceruloplasmin gene was mainly expressed in liver with limited expression in other tissues, and it was significantly up-regulated in the liver after bacterial infection alone or after co-injection with bacteria and iron-dextran, while expression was not significantly induced with iron-dextran treatment alone.  相似文献   

14.
15.
The pathological changes present in channel catfish Ictalurus punctatus spontaneously infected by Streptococcus iniae are described. The most consistent gross findings were marked petechial hemorrhages of the skin and congestion of internal organs, particularly the liver, spleen and kidneys. Other features included color fading at the edge of fin rays, enteritis and ascites. Histological examination showed oedema, degeneration and necrotic changes in many organs. Further, hepatitis, splenitis, interstitial nephritis, and meningitis with numerous monocyte and neutrocyte infiltrates were evident. Intact S. iniae cells were seen in macrophages. Apparently, spontaneous S. iniae infection caused acute septicaemia in channel catfish. This is the first histopathological report on channel catfish naturally infected with S. iniae.  相似文献   

16.
The roles of various inorganic ions and taurine, an organic osmolyte, in cell volume regulation were investigated in the perfused liver of a freshwater air-breathing catfishClarias batrachus under aniso-osmotic conditions. There was a transient increase and decrease of liver cell volume following hypotonic (-80 mOsmol/l) and hypertonic (+80 mOsmol/l) exposures, respectively, which gradually decreased/increased near to the control level due to release/ uptake of water within a period of 25–30 min. Liver volume decrease was accompanied by enhanced efflux of K+ (9.45 ± 0.54 μmol/g liver) due to activation of Ba2+- and quinidine-sensitive K+ channel, and to a lesser extent due to enhanced efflux of Cl- (4.35 ± 0.25 μmol/g liver) and Na+ (3.68 ± 0.37 μmol/g liver). Conversely, upon hypertonic exposure, there was amiloride- and ouabain-sensitive uptake of K+(9.78 ± 0.65 μmol/g liver), and also Cl- (3.72 ± 0.25 μmol/g liver). The alkalization/acidification of the liver effluents under hypo-/hypertonicity was mainly due to movement of various ions during volume regulatory processes. Taurine, an important organic osmolyte, appears also to play a very important role in hepatocyte cell volume regulation in the walking catfish as evidenced by the fact that hypo- and hyper-osmolarity caused transient efflux (5.68 ± 0.38 μmol/g liver) and uptake (6.38 ± 0.45 μmol/g liver) of taurine, respectively. The taurine efflux was sensitive to 4,4′-di-isothiocyanatostilbene-2,2′-disulphonic acid (DIDS, an anion channel blocker), but the uptake was insensitive to DIDS, thus indicating that the release and uptake of taurine during volume regulatory processes are unidirectional. Although the liver of walking catfish possesses the RVD and RVI mechanisms, it is to be noted that liver cells remain partly swollen and shrunken during anisotonic exposures, thereby possibly causing various volume-sensitive metabolic changes in the liver as reported earlier.  相似文献   

17.
兰州鲇与鲇消化系统的形态学及组织学比较研究   总被引:1,自引:0,他引:1  
为探究黄河濒危鱼类兰州鲇(Silurus lanzhouensis)消化系统的形态学和组织学结构特点,以鲇(Silurus asotus)为对照,对兰州鲇消化系统形态学和组织学进行了深入研究。结果表明:(1)兰州鲇与鲇的消化道和消化腺形态相似,具有肉食性鱼类的特征。兰州鲇消化道较短,有发达的“U”型胃,胃内皱褶明显,无幽门盲囊,肠道短且粗,可分为前肠、中肠和后肠三部分,前肠粗大,后肠较细。两种鲇属鱼类都有独立致密的肝脏和胰脏。(2)兰州鲇的比肠长显著大于鲇(P < 0.05),比胃重、比肝胰脏重显著低于鲇(P < 0.05),但二者的比肠重无显著性差异(P>0.05)。(3)兰州鲇胃的皱襞幅度小于鲇,且环肌层比兰州鲇薄。兰州鲇与鲇前肠的肠黏膜均形成了大量皱襞,肠黏膜、褶皱粗大,但鲇的褶皱分支较细密。兰州鲇与鲇的后肠与前肠相比,肠腔变小,褶皱数量明显减少,高度降低。黏膜层分布有杯状细胞和柱状细胞。兰州鲇与鲇的肝脏肝小叶间缺少结缔组织,分界不明显,而兰州鲇肝细胞的密度大于鲇。综上所述,兰州鲇与鲇的消化系统相似,均符合肉食性鱼类消化系统特征,结合消化生理等研究结果,表明兰州鲇的消化能力弱于鲇,这可能是在自然情况下兰州鲇的分布区域及适应性不及鲇的原因之一。  相似文献   

18.
Portions of the livers of fingerling rainbow trout were studied by light and electron microscopy. The histology, cytology and ultrastructure of mesothelial cells, serosal fibroblasts, hepatocytes, sinusoidal endothelial cells, endothelial cells of central veins and blood cells were described. Mesothelial cells and fibroblasts constituted a very thin capsule. Hepatocytes contained extensive areas of rough surfaced endoplasmic reticulum, consisting mainly of parallel cisternae and pools of glycogen. One or two nuclei and numerous mitochondria occurred in the areas of endoplasmic reticulum, but never in the pools of glycogen. Hepatocyte surface possibilities included hepatocyte to hepatocyte, hepatocyte to bile canaliculus, hepatocyte to space of Disse and hepatocyte to serosa. The trout liver was compared compared to channel catfish liver and to rat liver. Functional implications of the structural features were discussed.  相似文献   

19.
本研究旨在通过观察南方鲇血清与其红细胞的交叉反应以鉴定南方鲇的血型.实验结果表明:南方鲇的血清与同种其他个体的红细胞进行交叉反应时均未出现凝集现象,这表明南方鲇可能不存在血型或南方鲇具备血型但血清中相应的凝集素含量不足.以南方鲇的红细胞为抗原免疫日本种大耳白兔制备的抗血清与南方鲇的红细胞进行交叉反应,出现了不同程度的凝集反应,这表明南方鲇存在血型.据上述两个实验结果可以推断,南方鲇可能存在4种血型,分别命名为NA、NB、NAB和NO型;同时也证实,在鉴定南方鲇血型的研究中,通过制备抗血清与红细胞进行交叉反应的方法更为可靠.  相似文献   

20.
研究采用脂肪水平分别为4.7%、7.9%、10.9%、15.4%、18.9%的五种等氮配合饲料饲喂瓦氏黄颡鱼早期幼鱼,进行了为期30d的生长实验,探讨了瓦氏黄颡鱼早期幼鱼的脂肪需求。并克隆了瓦氏黄颡鱼脂蛋白脂酶(LPL)cDNA序列片段,采用实时荧光定量PCR研究了饲料脂肪水平对肝脏LPL基因表达水平的影响。结果表明,饲料脂肪水平从4.7%增加到10.9%显著促进了瓦氏黄颡鱼早期幼鱼的生长(P<0.05)。饲料脂肪水平显著影响了实验鱼的鱼体体成分,随着饲料脂肪水平的升高,鱼体干物质和脂肪含量显著增加而蛋白含量显著下降(P<0.05)。高脂诱导了瓦氏黄颡鱼肝脏LPL基因表达,摄食15.4%、18.9%这两组较高脂肪水平的实验鱼肝脏LPLmRNA表达水平显著升高(P<0.05)。根据特定生长率通过折线回归分析得出瓦氏黄颡鱼早期幼鱼最适脂肪水平为11.2%。    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号