首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding both sides of host–parasite relationships can provide more complete insights into host and parasite biology in natural systems. For example, phylogenetic and population genetic comparisons between a group of hosts and their closely associated parasites can reveal patterns of host dispersal, interspecies interactions, and population structure that might not be evident from host data alone. These comparisons are also useful for understanding factors that drive host–parasite coevolutionary patterns (e.g., codivergence or host switching) over different periods of time. However, few studies have compared the evolutionary histories between multiple groups of parasites from the same group of hosts at a regional geographic scale. Here, we used genomic data to compare phylogenomic and population genomic patterns of Alaska ptarmigan and grouse species (Aves: Tetraoninae) and two genera of their associated feather lice: Lagopoecus and Goniodes. We used whole‐genome sequencing to obtain hundreds of genes and thousands of single‐nucleotide polymorphisms (SNPs) for the lice and double‐digest restriction‐associated DNA sequences to obtain SNPs from Alaska populations of two species of ptarmigan. We found that both genera of lice have some codivergence with their galliform hosts, but these relationships are primarily characterized by host switching and phylogenetic incongruence. Population structure was also uncorrelated between the hosts and lice. These patterns suggest that grouse, and ptarmigan in particular, share habitats and have likely had historical and ongoing dispersal within Alaska. However, the two genera of lice also have sufficient dissimilarities in the relationships with their hosts to suggest there are other factors, such as differences in louse dispersal ability, that shape the evolutionary patterns with their hosts.  相似文献   

2.
Cospeciation between hosts and parasites offers a unique opportunity to use information from parasites to infer events in host evolutionary history. Although lice (Insecta: Phthiraptera) are known to cospeciate with their hosts and have frequently served as important markers to infer host evolutionary history, most molecular studies are based on only one or two markers. Resulting phylogenies may, therefore, represent gene histories (rather than species histories), and analyses of multiple molecular markers are needed to increase confidence in the results of phylogenetic analyses. Herein, we phylogenetically examine nine molecular markers in primate sucking lice (Phthiraptera: Anoplura) and we use these markers to estimate divergence times among louse lineages. Individual and combined analyses of these nine markers are, for the most part, congruent, supporting relationships hypothesized in previous studies. Only one marker, the nuclear protein-coding gene Histone 3, has a significantly different tree topology compared to the other markers. The disparate evolutionary history of this marker, however, has no significant effect on topology or nodal support in the combined phylogenetic analyses. Therefore, phylogenetic results from the combined data set likely represent a solid hypothesis of species relationships. Additionally, we find that simultaneous use of multiple markers and calibration points provides the most reliable estimates of louse divergence times, in agreement with previous studies estimating divergences among species. Estimates of phylogenies and divergence times also allow us to verify the results of [Reed, D.L., Light, J.E., Allen, J.M., Kirchman, J.J., 2007. Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice. BMC Biol. 5, 7.]; there was probable contact between gorilla and archaic hominids roughly 3 Ma resulting in a host switch of Pthirus lice from gorillas to archaic hominids. Thus, these results provide further evidence that data from cospeciating organisms can yield important information about the evolutionary history of their hosts.  相似文献   

3.
Cospeciation generally increases the similarity between host and parasite phylogenies. Incongruence between host and parasite phylogenies has previously been explained in terms of host switching, sorting, and duplication events. Here, we describe an additional process, failure of the parasite to speciate in response to host speciation, that may be important in some host-parasite systems. Failure to speciate is likely to occur when gene flow among parasite populations is much higher than that of their hosts. We reconstructed trees from mitochondrial and nuclear DNA sequences for pigeons and doves (Aves: Columbiformes) and their feather lice in the genus Columbicola (Insecta: Phthiraptera). Although comparisons of the trees from each group revealed a significant amount of cospeciation, there was also a significant degree of incongruence. Cophylogenetic analyses generally indicated that host switching may be an important process in the history of this host-parasite association. Using terminal sister taxon comparisons, we also identified three apparent cases where the host has speciated but the associated parasite has not. In two of these cases of failure to speciate, these comparisons involve allopatric sister taxa of hosts whose lice also occur on hosts sympatric with both of the allopatric sisters. These additional hosts for generalist lice may promote gene flow with lice on the allopatric sister species. Relative rate comparisons for the mitochondrial cytochrome oxidase I gene indicate that molecular substitution occurs about 11 times faster in lice than in their avian hosts.  相似文献   

4.
Some species of parasites occur on a wide range of hosts while others are restricted to one or a few host species. The host specificity of a parasite species is determined, in part, by its ability to disperse between host species. Dispersal limitations can be studied by exploring the genetic structure of parasite populations both within a single species of host and across multiple host species. In this study we examined the genetic structure in the mitochondrial cytochrome oxidase I (COI) gene of two genera of lice (Insecta: Phthiraptera) occurring on multiple sympatric species of doves in southern North and Central America. One genus, Columbicola, is generally less host-specific than the other, Physconelloides. For both genera we identified substantial genetic differentiation between populations of conspecific lice on different host species, generally 10-20% sequence divergence. This level of divergence is in the range of that often observed between species of these two genera. We used nested clade analysis to explore fine scale genetic structure within species of these feather lice. We found that species of Physconelloides exhibited more genetic structure, both among hosts and among geographical localities, than did species of Columbicola. In many cases, single haplotypes within species of Columbicola are distributed on multiple host species. Thus, the population genetic structure of species of Physconelloides reveals evidence of geographical differentiation on top of high host species specificity. Underlying differences in dispersal biology probably explain the differences in population genetic structure that we observed between Columbicola and Physconelloides.  相似文献   

5.
Cophylogenetic relationships between penguins and their chewing lice   总被引:4,自引:0,他引:4  
It is generally thought that the evolution of obligate parasites should be linked intimately to the evolution of their hosts and that speciation by the hosts should cause speciation of their parasites. The penguins and their chewing lice present a rare opportunity to examine codivergence between a complete host order and its parasitic lice. We estimated a phylogeny for all 15 species of lice parasitising all 17 species of penguins from the third domain of the mitochondrial 12S ribosomal rRNA gene, a portion of the mitochondrial cytochrome oxidase subunit 1 gene and 55 morphological characters. We found no evidence of extensive cospeciation between penguins and their chewing lice using TreeMap 2.02beta. Despite the paucity of cospeciation, there is support for significant congruence between the louse and penguin phylogenies due to possible failure to speciate events (parasites not speciating in response to their hosts speciating).  相似文献   

6.
Host specificity in parasites can be explained by spatial isolation from other potential hosts or by specialization and speciation of specific parasite species. The first assertion is based on allopatric speciation, the latter on differential lifetime reproductive success on different available hosts. We investigated the host specificity and cophylogenetic histories of four sympatric European bat species of the genus Myotis and their ectoparasitic wing mites of the genus Spinturnix. We sampled >40 parasite specimens from each bat species and reconstructed their phylogenetic COI trees to assess host specificity. To test for cospeciation, we compared host and parasite trees for congruencies in tree topologies. Corresponding divergence events in host and parasite trees were dated using the molecular clock approach. We found two species of wing mites to be host specific and one species to occur on two unrelated hosts. Host specificity cannot be explained by isolation of host species, because we found individual parasites on other species than their native hosts. Furthermore, we found no evidence for cospeciation, but for one host switch and one sorting event. Host‐specific wing mites were several million years younger than their hosts. Speciation of hosts did not cause speciation in their respective parasites, but we found that diversification of recent host lineages coincided with a lineage split in some parasites.  相似文献   

7.
Host–parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host‐related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro‐ versus macroevolutionary dynamics in host–parasite interactions.  相似文献   

8.
Coevolutionary processes that drive the patterns of host–parasite associations can be deduced through congruence analysis of their phylogenies. Feather lice and their avian hosts have previously been used as typical model systems for congruence analysis; however, such analyses are strongly biased toward nonpasserine hosts in the temperate zone. Further, in the Afrotropical region especially, cospeciation studies of lice and birds are entirely missing. This work supplements knowledge of host–parasite associations in lice using cospeciation analysis of feather lice (genus Myrsidea and the Brueelia complex) and their avian hosts in the tropical rainforests of Cameroon. Our analysis revealed a limited number of cospeciation events in both parasite groups. The parasite–host associations in both louse groups were predominantly shaped by host switching. Despite a general dissimilarity in phylogeny for the parasites and hosts, we found significant congruence in host–parasite distance matrices, mainly driven by associations between Brueelia lice and passerine species of the Waxbill (Estrildidae) family, and Myrsidea lice and their Bulbul (Pycnonotidae) host species. As such, our study supports the importance of complex biotic interactions in tropical environments.  相似文献   

9.
Although molecular-based phylogenetic studies of hosts and parasites are increasingly common in the literature, no study to date has examined two congeneric lineages of parasites that live in sympatry on the same lineage of hosts. This study examines phylogenetic relationships among chewing lice (Phthiraptera: Trichodectidae) of the Geomydoecus coronadoi and Geomydoecus mexicanus species complexes and compares these to phylogenetic patterns in their hosts (pocket gophers of the rodent family Geomyidae). Sympatry of congeneric lice provides a natural experiment to test the hypothesis that closely related lineages of parasites will respond similarly to the same host. Sequence data from the mitochondrial COI and the nuclear EF-1alpha genes confirm that the two louse complexes are reciprocally monophyletic and that individual clades within each species complex parasitize a different species of pocket gopher. Phylogenetic comparisons reveal that both louse complexes show a significant pattern of cophylogeny with their hosts. Comparisons of rates of nucleotide substitution at 4-fold degenerate sites in the COI gene indicate that both groups of lice have significantly higher basal mutation rates than their hosts. The two groups of lice have similar basal rates of mutation, but lice of the G. coronadoi complex show significantly elevated rates of nucleotide substitution at all sites. These rate differences are hypothesized to result from population-level phenomena, such as effective population size, founder effects, and drift, that influence rates of nucleotide substitution.  相似文献   

10.
We used phylogenetic analyses of cytochrome b sequences of malaria parasites and their avian hosts to assess the coevolutionary relationships between host and parasite lineages. Many lineages of avian malaria parasites have broad host distributions, which tend to obscure cospeciation events. The hosts of a single parasite or of closely related parasites were nonetheless most frequently recovered from members of the same host taxonomic family, more so than expected by chance. However, global assessments of the relationship between parasite and host phylogenetic trees, using Component and ParaFit, failed to detect significant cospeciation. The event-based approach employed by TreeFitter revealed significant cospeciation and duplication with certain cost assignments for these events, but host switching was consistently more prominent in matching the parasite tree to the host tree. The absence of a global cospeciation signal despite conservative host distribution most likely reflects relatively frequent acquisition of new hosts by individual parasite lineages. Understanding these processes will require a more refined species concept for malaria parasites and more extensive sampling of parasite distributions across hosts. If parasites can disperse between allopatric host populations through alternative hosts, cospeciation may not have a strong influence on the architecture of host-parasite relationships. Rather, parasite speciation may happen more often in conjunction with the acquisition of new hosts followed by divergent selection between host lineages in sympatry. Detailed studies of the phylogeographic distributions of hosts and parasites are needed to characterize these events.  相似文献   

11.
Cophylogenetic studies examine the relationship between host and parasite evolution. One aspect of cophylogenetic studies that has had little modern discussion is parasites with multiple definitive hosts. Parasite species with multiple host species are anomalous as, under a codivergence paradigm, speciation by the hosts should cause speciation of their parasites. We discuss situations such as cryptic parasite species, recent host switching or failure to speciate that may generate multi-host parasites. We suggest methods to identify which of the mechanisms have led to multi-host parasitism. Applying the suggested methods may allow multi-host parasites to be integrated more fully into cophylogenetic studies.  相似文献   

12.
Historically, comparisons of host and parasite phylogenies have concentrated on cospeciation. However, many of these comparisons have demonstrated that the phylogenies of hosts and parasites are seldom completely congruent, suggesting that phenomena other than cospeciation play an important role in the evolution of host-parasite assemblages. Other coevolutionary phenomena, such as host switching, parasite duplication (speciation on the host), sorting (extinction), and failure to speciate can also influence host-parasite assemblages. Using mitochondrial and nuclear protein-coding DNA sequences, I reconstructed the phylogeny of ectoparasitic toucan chewing lice in the Austrophilopterus cancellosus subspecies complex and compared this phylogeny with the phylogeny of the hosts, the Ramphastos toucans, to reconstruct the history of coevolutionary events in this host-parasite assemblage. Three salient findings emerged. First, reconstructions of host and louse phylogenies indicate that they do not branch in parallel, and their cophylogenetic history shows little or no significant cospeciation. Second, members of monophyletic Austrophilopterus toucan louse lineages are not necessarily restricted to monophyletic host lineages. Often, closely related lice are found on more distantly related but sympatric toucan hosts. Third, the geographic distribution of the hosts apparently plays a role in the speciation of these lice. These results suggest that for some louse lineages biogeography may be more important than host associations in structuring louse populations and species, particularly when host life history (e.g., hole nesting) or parasite life history (e.g., phoresis) might promote frequent host switching events between syntopic host species. These findings highlight the importance of integrating biogeographic information into cophylogenetic studies.  相似文献   

13.
Parasites are often dependent on their hosts for survival and dispersal and this led to a hypothesis that the evolution of obligate permanent host-specific parasites specifically will show phylogenetic congruence with their hosts. To investigate the factors influencing parasite evolution, mitochondrial- and nuclear DNA sequence data were used to test for genetic co-divergences between Hoplopleura and Polyplax lice occurring on four rodent taxa associated with the Aethomys/Micaelamys rodent complex. Mitochondrial DNA haplotype networks drawn from 24 rodents and 74 obligate permanent lice supported the existence of at least eight genetically distinct parasite lineages. Bayesian and maximum likelihood analyses showed considerable congruence between the phylogenies of the parasites and their hosts, and these finding were also partly supported in a fair amount of overlap in the timing of divergences. Jane co-phylogenetic reconstructions illustrated that co-divergences are the most parsimonious solution to explain the evolution within Polyplax, and also within Hoplopleura. Based on mitochondrial DNA cytochrome oxidase subunit I sequence distances of >13% between strongly supported monophyletic parasite lineages, coupled to some unique morphological features detected for both lice taxa occurring on Micaelamys granti, we propose that the taxonomy of Polyplax and Hoplopleura studied herein is in need of revision. In addition, our findings provide examples of perfect topological co-divergence between parasites and their hosts, and in doing so also provide circumstantial evidence for co-evolution between these permanent host-specific parasites and their hosts. We argue that the signal of co-divergence is partly enforced by limited opportunities for host switching events across the landscape.  相似文献   

14.
The dove louse genus Columbicola has become a model system for studying the interface between microevolutionary processes and macroevolutionary patterns. This genus of parasitic louse (Phthiraptera) contains 80 described species placed into 24 species groups. Samples of Columbicola representing 49 species from 78 species of hosts were obtained and sequenced for mitochondrial (COI and 12S) and nuclear (EF-1alpha) genes. We included multiple representatives from most host species for a total of 154 individual Columbicola, the largest molecular phylogenetic study of a genus of parasitic louse to date. These sequences revealed considerable divergence within several widespread species of lice, and in some cases these species were paraphyletic. These divergences correlated with host association, indicating the potential for cryptic species in several of these widespread louse species. Both parsimony and Bayesian maximum likelihood phylogenetic analyses of these sequences support monophyly for nearly all the non-monotypic species groups included in this study. These trees also revealed considerable structure with respect to biogeographic region and host clade association. These patterns indicated that switching of parasites between host clades is limited by biogeographic proximity.  相似文献   

15.
The associations between pathogens and their hosts are complex and can result from a variety of evolutionary processes including codivergence, lateral transfer, or duplication. Papillomaviruses (PVs) are double-stranded DNA viruses ubiquitously present in mammals and are a suitable target for rigorous statistical tests of potential virus-host codivergence. We analyze the evolutionary dynamics of PV diversification by comparing robust phylogenies of PVs and their respective hosts using different statistical approaches to assess topological and branch-length congruence. Mammalian PVs segregated into four diverse major clades that overlapped to varying degrees in terms of their mammalian host lineages. The hypothesis that PVs and hosts evolved independently was globally rejected (P = 0.0001), although only 90 of 207 virus-host associations (43%) were significant in individual tests. Virus-host codivergence accounted roughly for one-third of the evolutionary events required to reconcile PV-host evolutionary histories. When virus-host associations were analyzed locally within each of the four viral clades, numerous independent topological congruencies were identified that were incompatible with respect to the global trees. These results support an evolutionary scenario in which early PV radiation was followed by independent codivergence between viruses within each of the major clades and their hosts. Moreover, heterogeneous groups of closely related PVs infecting non-related hosts suggest several interspecies transmission events. Our results argue thus for the importance of alternative events in PV evolution, in contrast to the prevailing opinion that these viruses show a high degree of host specificity and codivergence.  相似文献   

16.

Background  

The parasitic sucking lice of primates are known to have undergone at least 25 million years of coevolution with their hosts. For example, chimpanzee lice and human head/body lice last shared a common ancestor roughly six million years ago, a divergence that is contemporaneous with their hosts. In an assemblage where lice are often highly host specific, humans host two different genera of lice, one that is shared with chimpanzees and another that is shared with gorillas. In this study, we reconstruct the evolutionary history of primate lice and infer the historical events that explain the current distribution of these lice on their primate hosts.  相似文献   

17.
The species-specific associations of the African brood parasitic finches Vidua with their estrildid finch host species may have originated by cospeciation with the host species or by later colonizations of new hosts. Predictions of these alternative models were tested in two species groups of brood parasites (indigobirds, paradise whydahs) and their hosts. Phylogenetic analyses suggested that the brood parasites and their hosts did not speciate in parallel. The parasitic indigobirds share mitochondrial haplotypes with each other, and species limits in both indigobirds and paradise whydahs do not correspond with their gene trees. Different parasite species within a region are more closely related to each other than any is to parasites that are associated with its same host species in other regions of Africa. There is little genetic difference between parasite species D?i,j < 0.001 in the indigobirds, D?i,j = 0.01 in the whydahs). Genetic distances D?i,j between the parasite species are less than the genetic distances between their corresponding host species in all parasite-host comparisons, and average only 7.2% as large in the indigobirds as in their hosts and 42% as large in the paradise whydahs as in their hosts. A phylogenetic model that allows ancestral haplotype polymorphisms to be retained in descendant species was compared to a constraint model of species monophyly requiring all but the one ancestral haplotype to be independently derived within each species. The constraint model increases the length of the indigobird tree by 50% over that of the model of retained ancestral polymorphisms; the difference is statistically significant. Both phylogenetic and distance analyses indicate that the brood parasites have become associated with their host species through host switches and independent colonizations of the hosts, rather than through parallel cospeciation with them. The molecular genetic results are supported by recent discoveries of additional host species that are associated with the indigobirds in the field and by variation in the species-specific song behaviors of the brood parasites.  相似文献   

18.
Studies of biodiversity traditionally focus on charismatic megafauna. By comparison, little is known about parasite biodiversity. Recent studies suggest that co-extinction of host specific parasites with their hosts should be common and that parasites may even go extinct before their hosts. The few studies examining the relationship between parasite diversity and habitat quality have focused on parasites that require intermediate hosts and pathogens that require vectors to complete their life-cycles. Declines in parasite and pathogen richness in these systems could be due to the decline of any of the definitive hosts, intermediate hosts, or vectors. Here we focus on avian ectoparasites, primarily lice, which are host specific parasites with simple, direct, life-cycles. By focusing on these parasites we gain a clearer understanding of how parasites are linked to their hosts and their hosts’ environment. We compare parasite richness on birds from fragmented forests in southern China. We show that parasite richness correlates with forest size, even among birds that are locally common. The absence of some ectoparasite genera in small forests suggests that parasites can go locally extinct even if their hosts persist. Our data suggest that the conservation of parasite biodiversity may require preservation of habitat fragments that are sufficiently large to maintain parasite populations, not just their host populations.  相似文献   

19.
Host resources govern the specificity of swiftlet lice: size matters   总被引:1,自引:0,他引:1  
1. An important component of parasite diversity is the specificity for particular host taxa shown by many parasites. Specificity is often assumed to imply adaptive specialization by the parasite to its host, such that parasites are incapable of surviving and reproducing on 'foreign' hosts.
2. Specificity, however, need not be due to adaptation to particular hosts. Some parasites may be specific simply because they are incapable of dispersing among host taxa. For example, 'permanent' parasites like chewing lice spend their entire lifecycle on the body of the host and require direct contact between hosts for dispersal.
3. The role of adaptive constraints in parasite host-specificity has seldom been tested in natural populations. We conducted such a test by comparing the relative fitness of host-specific lice experimentally transferred among closely related species of cave swiftlets in northern Borneo.
4. The survival of lice in most of these transfers was significantly reduced in proportion to the mean difference in feather barb size between the donor and recipient species of hosts. Thus, adaptation to a particular resource on the body of the host does appear to govern the specificity of swiftlet lice.
5. In transfers where lice survived, microhabitat shifting on the body of the host was observed, whereby the mean barb diameter of the feathers on which the lice occurred was held 'constant'.  相似文献   

20.
Many species of pocket gophers and their ectoparasitic chewing lice have broadly congruent phylogenies, indicating a history of frequent codivergence. For a variety of reasons, phylogenies of codiverging hosts and parasites are expected to be less congruent for more recently diverged taxa. This study is the first of its scale in the pocket gopher and chewing louse system, with its focus entirely on comparisons among populations within a single species of host and 3 chewing louse species in the Geomydoecus bulleri species complex. We examined mitochondrial DNA from a total of 46 specimens of Geomydoecus lice collected from 11 populations of the pocket gopher host, Pappogeomys bulleri. We also examined nuclear DNA from a subset of these chewing lice. Louse phylogenies were compared with a published pocket gopher phylogeny. Contrary to expectations, we observed a statistically significant degree of parallel cladogenesis in these closely related hosts and their parasites. We also observed a higher rate of evolution in chewing louse lineages than in their corresponding pocket gopher hosts. In addition, we found that 1 louse species (Geomydoecus burti) may not be a valid species, that subspecies within G. bulleri are not reciprocally monophyletic, and that morphological and genetic evidence support recognition of a new species of louse, Geomydoecus pricei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号