首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has previously been established that several glycopeptides of peptidoglycan origin are formed as a result of processing of Bacillus subtilis cell walls by the macrophage-like cell line RAW264. Although the formation of these glycopeptides could account for the humoral immune responses characteristic of bacterial peptidoglycans, their formation does not account for the cellular-mediated immune responses observed for water-in-oil emulsions of peptidoglycan or for lipophilic derivatives of glycopeptide fragments thereof. Therefore, the processing of peptidoglycan by macrophages was reexamined to establish whether the lipophilic derivative of any peptidoglycan-derived glycopeptide was formed. The experiments were performed by incubating B. subtilis cell walls radiolabeled in muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid residues in the presence of the macrophage-like cell line RAW264. The crude lipid fraction derived from the macrophages was further fractionated and analyzed, revealing the presence of two lipophilic glycopeptides that contained glucosamine, muramic acid, and alanine of bacterial origin.  相似文献   

2.
The uptake of modified low density lipoprotein (LDL) by arterial macrophages is a key event in the atherogenesis. We studied 1) the uptake and degradation of modified LDL, 2) LDL recognition by specific receptors, and 3) the foam cell formation with murine macrophage-like RAW 264 cells in vitro. The cells took up and degraded effectively 125I-labeled acetylated LDL (Ac-LDL) and aggregated LDL (Aggr-LDL). Also oxidized LDL (Ox-LDL) was taken up but it was degraded poorly. The degradation of 125I-Ac-LDL was efficiently competed by both unlabeled Ac-LDL and Ox-LDL, whereas the degradation of 125I-Ox-LDL was partially competed by unlabeled Ox-LDL and Aggr-LDL but not at all by unlabeled Ac-LDL. The incubation with increasing concentrations of Ac-LDL, Aggr-LDL or Ox-LDL resulted in marked foam cell formation in the RAW 264 cells. Ox-LDL was cytotoxic at 500 to 1000 microg/ml concentrations. The results show that RAW 264 cells have at least two classes of receptors for modified lipoproteins: one that recognizes both Ox-LDL and Ac-LDL, and is similar to the scavenger receptors, and another that recognizes Ox-LDL but not Ac-LDL. RAW 264 cells are a convenient model cell line for examining the metabolism of modified lipoproteins, not only that of Ac-LDL but also that of Ox-LDL and Aggr-LDL, and cellular accumulation of lipids derived from modified LDL.  相似文献   

3.
4.
5.
The chorioallantoic membrane (CAM) of the 9 and 10 day chick embryo has been used as a system to investigate the control of growth of mesenchymal tissue in vivo. The mesenchyme (but not the chorionic epithelium or allantoic epithelium) responded to the mitogenic stimuli of trypsin, activated macrophages and the secreted products of activated macrophages. The response to trypsin mimics the response of chick embryo fibroblasts in vitro. Under the conditions used, the increased labeling index was observed in CAM mesenchyme by 6 h (the shortest time assayed) and remained at this level for at least 24 h. This system could be used to evaluate the mitogenicity in vivo of other substances known to be mitogenic to fibroblasts in vitro.  相似文献   

6.
Glycerophospholipids containing arachidonic acid (20:4) serve as the precursors for an array of biologically active lipid mediators, most of which are produced by macrophages. We have applied mass spectrometry-based lipid profiling technology to evaluate the glycerophospholipid structure and composition of two macrophage populations, resident peritoneal macrophages and RAW264.7 cells, with regard to their potential for 20:4-based lipid mediator biosynthesis. Fatty acid analysis indicated that RAW264.7 cells were deficient in 20:4 (10 +/- 1 mol %) compared to peritoneal macrophages (26 +/- 1 mol %). Mass spectrometry of total glycerophospholipids demonstrated a marked difference in the distribution of lipid species, including reduced levels of 20:4-containing lipids, in RAW264.7 cells compared to peritoneal macrophages. Enrichment of RAW264.7 cells with 20:4 increased the fatty acid to 20 +/- 1 mol %. However, the distribution of the incorporated 20:4 remained different from that of peritoneal macrophages. RAW264.7 cells pretreated with granulocyte-macrophage colony stimulating factor followed by lipopolysaccharide and interferon-gamma mobilized similar quantities of 20:4 and produced similar amounts of prostaglandins as peritoneal macrophages treated with LPS alone. LPS treatment resulted in detectable changes in specific 20:4-containing glycerophospholipids in peritoneal cells, but not in RAW264.7 cells. 20:4-enriched RAW264.7 cells lost 88% of the incorporated fatty acid during the LPS incubation without additional prostaglandin synthesis. These results illustrate that large differences in glycerophospholipid composition may exist, even in closely related cell populations, and demonstrate the importance of interpreting the potential for lipid-mediator biosynthesis in the context of overall glycerophospholipid composition.  相似文献   

7.
Macrophage catabolism of lipid A is regulated by endotoxin stimulation   总被引:1,自引:0,他引:1  
Lipopolysaccharide (LPS) is a Gram-negative bacterial glycolipid that is believed to cause, by virtue of its stimulatory actions on macrophages and other eukaryotic cells, the life-threatening symptoms associated with Gram-negative infections. Macrophages both respond to and catabolically deactivate LPS. The lipid A moiety of LPS is responsible for the stimulatory actions of LPS on macrophages. We have previously developed methods employing a radiolabeled bioactive lipid A precursor, 4'-32P-lipid IVA, to study the interaction of this class of lipids with animal cells (Hampton, R. Y., Golenbock, D. T., and Raetz, C. R. H. (1988). J. Biol. Chem. 263, 14802-14807). In the current work, we have examined the uptake and catabolism of 4'-32P-lipid IVA by the RAW 264.7 cell line in serum-containing medium at physiological temperatures and have studied the effect of LPS stimulation on the ability of these cells to catabolize lipid IVA. RAW 264.7 macrophage-like cells avidly take up 4'-32P-lipid IVA under cell culture conditions at nanomolar concentrations. Uptake of lipid IVA was accompanied by lysosomal dephosphorylation of a fraction of the lipid to yield 4'-monophosphoryl lipid IVA. Chemically generated 4'-monophosphoryl lipid IVA was found to be substantially less bioactive than lipid IVA in the RAW cell, indicating that this catabolic dephosphorylation results in detoxification. In uptake experiments of 3-4 h duration, all metabolism of lipid IVA is blocked by ligands of the macrophage scavenger receptor. In longer experiments (24 h), both scavenger receptor-dependent and -independent uptake are responsible for the lysosomal catabolism of lipid IVA. Preincubation of RAW 264.7 cells with LPS caused dose-dependent inhibition of lipid IVA dephosphorylation. Sufficient LPS stimulation resulted in essentially complete inhibition of lipid IVA catabolism in both short- and long-term uptake experiments. This effect occurred at physiologically relevant concentrations of LPS (IC50 less than 1 ng/ml), and our data indicate that LPS-induced blockade of lipid IVA catabolism was due to the resultant physiological stimulation of the cells, and not inhibition of dephosphorylation by competition for uptake or enzymatic sites or by simple sequestration of labeled lipid IVA by LPS aggregates. We suggest that in the macrophage, LPS can modulate its own catabolism by virtue of its pharmacological properties. This effect of LPS could play a role in LPS pathophysiology as well as in macrophage biology.  相似文献   

8.
《Life sciences》1994,54(14):PL229-PL234
Effect of liposome-encapsulated and free clodronate on the IL-6 and TNF production by macrophages was studied using RAW 264 cell line as a macrophage model, and dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA) for analysis of secreted cytokines. LPS-stimulated RAW 264 cells proved to produce notable amounts of these two cytokines, and DELFIA was sensitive and reliable method for analysis. Liposome-encapsulated clodronate inhibited the production of both cytokines, IL-6 being affected more than TNF, and the effect was mostly due to the drug itself, not to liposomal lipid. More than ten times higher concentration of free clodronate than liposomal clodronate was needed to inhibit cytokine production. This is the first report on the cytokine inhibitory property of clodronate, and the results support the idea of the use of liposomal clodronate as a macrophage suppressive agent in autoimmune diseases.  相似文献   

9.
The antiapoptotic molecule Bcl-xL has been implicated in the differentiation and survival of activated macrophages in inflammatory conditions. In this report, the role of Bcl-xL in LPS-induced cytokine gene expression and secretion was studied. Bcl-xL-transfected RAW 264 macrophages were protected from gliotoxin-induced apoptosis, indicating the presence of functional Bcl-xL. Overexpression of Bcl-xL in this macrophage cell line was also associated with a marked inhibition of LPS-induced TNF-alpha, JE/monocyte chemoattractant protein 1, and macrophage inflammatory protein 2 secretion. Inhibition of LPS-induced cytokine secretion was paralleled by a decrease in levels of steady-state mRNA for the above cytokines and for IL-1beta. Decreased production of TNF-alpha in Bcl-xL transfectants was not due to increased mRNA degradation, as the mRNA half-lives were the same in Bcl-xL transfectants and control macrophages. Although the composition of NF-kappaB complexes detected by EMSA and supershift analysis in nuclear lysates derived from Bcl-xL transfectants and control cells was indistinguishable, LPS-induced inhibitory kappaBalpha degradation, as well as NF-kappaB binding and AP-1 activation, were slightly decreased by ectopic expression of Bcl-xL. More strikingly, LPS-induced phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was strongly repressed by Bcl-xL overexpression, offering a possible mechanism for the inhibition of LPS-induced cytokine production. These data provide the first evidence for a novel role for Bcl-xL as an anti-inflammatory mediator in macrophages.  相似文献   

10.
Cytochemical investigations have associated acid inorganic trimetaphosphatase (TMPase) activity with the lysosomes of certain cell types. We have used the modified staining technique of Berg to show that this enzyme activity is present in normal mononuclear phagocytes and macrophage cell lines. We have found this enzyme activity to be present in murine RAW264 macrophages, in human U937 macrophages, in normal human blood monocytes, and in guinea pig peritoneal macrophages. All of the RAW264 and U937 macrophages showed intense TMPase activity. Many of the human monocytes and most of the guinea pig macrophages were labeled by this method. The reaction product was associated with the lysosomes of these cell types. The lysosomal staining-pattern was similar to that of acid phosphatase. Differences with regard to Golgi staining were noted. This indicates that TMPase is a lysosomal enzyme of mammalian macrophages. The distinction between TMPase and acid phosphatase activity has been demonstrated by measuring the pH optimum of each enzyme. Using substrates identical to those of the ultrastructural cytochemistry, we show that the pH optimum of TMPase is 4.0 and that of acid phosphatase is 5.0. The enzymatic activities are therefore ultrastructurally and biochemically distinct. Following phagocytosis of latex, yeast (Saccharomyces cerevisiae), or Corynebacterium parvum, TMPase has been found to be associated with phagosomes. This enzyme may take part in the degradation of phagocytosed materials, particularly microorganisms which contain inorganic polyphosphates and metaphosphates.  相似文献   

11.
Chemically modified lipopolysaccharides of Salmonella abortus-equi were tested for mitogenicity on mouse spleen cells as well as antagonism of the mitogenicity of intact lipopolysaccharide (LPS). All the lipopolysaccharide preparations deacylated by different alkaline treatments suffered a drastic loss of mitogenicity. The mitogenic activity of lipid A was also lost when succinic residues were introduced on hydroxyl groups. Partially deacylated alkaline-treated preparations (but not completely deacylated preparations) inhibited the activation of splenic B-cells by LPS. They were found to be toxic to spleen cells, however, and to suppress not only the mitogenicity of LPS but that of concanavalin A as well. This inhibitory action was not exhibited when all of the fatty acid was eliminated. Succinylated lipid A, on the other hand, was not toxic to the cells and inhibited the B-cell mitogenicity of lipopolysaccharide (but not the T-cell mitogenicity of concanavalin A). Chemical analysis revealed that about 4.6 mol of succinic acid had been introduced into lipid A by succinylation, and that the fatty acid and phosphate composition was unchanged by this treatment. Macrophages do not seem to participate in this inhibition. Inhibition was observed when succinylated lipid A was added either at the same time or after lipid A mitogen, but optimal inhibition was expressed when it was added to the culture 3 h before LPS. Inhibition was not affected by washing the cells before adding LPS. Inhibition increased as the ratio of suppressor to mitogen increased, suggesting that the succinylated lipid A competes with intact LPS.  相似文献   

12.
Lipophilic biopolymers from the cell walls of saprophytic mycobacteria were shown to stimulate the process of hydrocarbon assimilation by Pseudomonas aeruginosa cells. This should be attributed to the fact that bacterial peptidoglycolipids emulsify a hydrocarbon facilitating the contact between it and the cells. It has been found experimentally that P. aeruginosa cells growing in the medium with n-alkanes release a factor into the medium. The factor appears to contain peptide chains and is responsible for hydrocarbon emulsification.  相似文献   

13.
14.
Addition of bacterial lipopolysaccharide (LPS), a B cell mitogen, to mouse spleen cultures strongly stimulated production of colony-stimulating factor (CSF), the humoral regulator of granulopoiesis, and macrophage formation in vitro. Secretion of CSF from LPS-stimulated spleen cells coincided with cellualr DNA synthesis and cell transformation and both activities could be attributed to the lipid A moiety of the molecule. Different experimental approaches were used to study the relationship of CSF release and lymphocyte activation in response to LPS: a) modification of LPS with polymyxin B, an antibiotic bactericidal for most Gram-negative bacteria, caused a marked reduction in mitogenic activity, although the ability to induce CSF was not significantly altered; b)spleen cells from CBA/N mice, a mutant strain with an x-linked genetic defect in immunologic and mitogenic responses to polyclonal activators including LPS, showed diminished mitogeinc responses; however, high levels of CSF were produced; c) mitotic and DNA inhibitors (colchicine and cytosine arabinoside) did not affect CSF release although they completely inhibited mitogenicity. Thus, the spleen cell population participating in the process of LPS-induced CSF generation is probably a nondividing, terminally differentiated one without need for DNA synthesis. In addition, it was also shown that active RNA and protein synthesis are needed in this process.  相似文献   

15.
The mitogenic activity of heterologous rabbit anti-mouse brain sera (RAMB) was investigated. By complement-dependent cytotoxicity and indirect immunofluorescence, RAMB was T-cell specific. Mitogenic activity was assessed by determination of [3H]thymidine incorporation into DNA. RAMB was mitogenic for spleen cells for Thy 1.1- and Thy 1.2-positive mouse strains. Maximal mitogenic responsiveness to RAMB occurred on Day 3 of culture. The incorporation of [3H]uridine into RNA and [3H]leucine into protein and percentage of blast cells in culture were also significantly increased following RAMB stimulation. The mitogenic activity of RAMB was abrogated by adsorption of the sera with BALB/c or AKR thymocytes or brains or with RL♂ 1.3+, a Thy 1.2-bearing T-cell lymphoma of BALB/c origin. In contrast, the mitogenic activity was not removed when RAMB sera were absorbed with RL♂ 1.4?, a variant of RL♂ 1 which appears to specifically lack cell surface Thy 1 determinants. These data suggest that the mitogenic activity of RAMB is Thy 1 directed. RAMB mitogenicity is T-cell dependent. Spleen cells from normal and heterologous nu/+ mice respond to RAMB, while spleen cells from nu/nu mice do not respond. Normal thymocytes and cortisone-resistant thymocytes do not respond mitogenically to RAMB. The response of unseparated spleen cells to RAMB is also macrophage dependent. Nylon-wool column-purified splenic T cells respond to high concentrations of RAMB in the absence of exogenous macrophages but do not respond to lower concentrations of RAMB unless exogenous macrophages are added to the cultures. Nylon-wool-adherent cells, which are B-cell enriched and relatively T-cell depleted, also respond to RAMB, suggesting that in the presence of even small numbers of T cells, B cells can be recruited into the response.  相似文献   

16.
Microbial products such as LPS stimulate macrophages to produce a wide diversity of inducible gene products needed for immediate host defense and priming of an appropriate acquired immune response. In this study, we have examined LPS-inducible gene expression in subclones of a mouse macrophage cell line, RAW264, using cDNA microarrays. Even archetypal target genes such as TNF-alpha were not induced in all subclones, and there was no absolute correlation between expression of pairs of genes. Nevertheless, the array analysis revealed clusters of genes that were more likely to be coexpressed. RAW264 cells stably transfected with luciferase reporter genes driven by LPS-responsive promoters revealed the same kind of clonal heterogeneity. The results indicate that each LPS-inducible gene has its own inherent probability of activation in response to LPS.  相似文献   

17.
The ornithine-containing lipids (OL)-induced cytokine production pattern in macrophage-like J774.1 and RAW 264.7 cells was different from that in the peritoneal macrophages previously reported. OLs, as well as lipopolysaccharide (LPS) of Escherichia coli, strongly induced tumor necrosis factor (TNF) alpha but not interleukin (IL)-1beta in J774.1 cells. In the RAW cells, IL-1beta, TNF-alpha and prostaglandin E(2) were strongly induced by the OLs and LPS. OL- and serine-glycine-containing lipid (SGL)-induced TNF-alpha production in J774.1 and RAW 264.7 cells required serum. However, in CD14-deficient LR-9 cells, TNF-alpha was not induced by the OLs in the presence or absence of serum. OLs and a SGL almost completely inhibited the binding of (125)I-LPS to J774.1 cells. These results suggested that OLs and SGL activate macrophages via the CD14-dependent pathway.  相似文献   

18.
Cytosols prepared from murine peritoneal macrophages and the RAW 264 macrophage cell line catalyzed conversion of L-arginine to the labile vaso-relaxant nitric oxide and its accumulating endproducts, nitrite and nitrate. This activity required previous exposure of the cells to interferon-gamma and bacterial lipopolysaccharide. Nitrogen oxide synthetase activity was characterized further using nitrite + nitrate production as an indicator of the synthesis of all three nitrogen oxides. Nitrogen oxide synthetase activity was heat-sensitive, NADPH-dependent, and exhibited substrate stereospecificity. The nitrite + nitrate formation was proportional to time and concentration of cytosol. However, dilution decreased the specific activity, suggesting a cofactor requirement in addition to NADPH. Specific activity was restored by addition of cytosol from non-activated macrophages, which itself did not make nitric oxide. Both high and low molecular weight fractions of control macrophage cytosol were required to restore activity of cytosol from activated macrophages that had been either diluted or partially purified. Thus, the enzymatic system involved in nitric oxide synthesis by murine macrophages consists of at least one inducible and two constitutive components.  相似文献   

19.
Aims:  The objective of this study was to investigate the ability of specific bacterial components of Lactobacillus plantarum KFCC11389P to induce anti-inflammatory mediators in cell cultures of the murine macrophage cell line, RAW 264·7.
Methods and Results:  The RAW 264·7 cells were stimulated with viable bacterial cells (VC), heat-killed (HK) cells, cell walls (CW) or ultrafiltrates of metabolic products (UF). An increase in the levels of tumour necrosis factor (TNF)-α was observed in VC, HK and CW, but this effect was much lower in UF. VC stimulated higher levels of interleukin (IL)-6 releases as well as nitric oxide production than HK. In contrast, UF and its separated molecule, fraction 4, were much strong IL-10 inducers. Fraction 4 (8·1 kDa), especially, inhibited the production of pro-inflammatory cytokines, IL-6 (89% decrease) and TNF-α (55% decrease), in lipopolysaccharide (LPS)-stimulated murine macrophages.
Conclusions:  The results of this study indicate that metabolic products of Lact. plantarum KFCC11389P could influence the immune-modulating activity via IL-10, and pretreatment with this specific molecule could inhibit LPS-induced release of IL-6 and TNF-α.
Significance and Impact of the Study:  Our findings suggest that the specific molecules of Lact. plantarum KFCC11389P may be useful for the treatment of acute inflammatory responses such as Crohn's disease or ulcerative colitis.  相似文献   

20.
The lipid A moiety of bacterial lipopolysaccharide (LPS) elicits several types of responses in murine B lymphocytes. First, lipid A induces the nonproliferative expression of cell surface antigens in more immature cell types. Second, lipid A induces a mitogenic response in more mature B cell types. Lipid A induces the expression of Ia antigens on bone marrow cells from C3H/DiSn but not C3H/HeJ mice. The Ia-inducible cells possess surface immunoglobulin. Agents that elevate intracellular levels of adenosine 3',5'-cyclic monophosphate (cyclic AMP) induce the appearance of Ia antigens on B lymphocytes from both C3H/HeJ and C3H/DiSn mice, suggesting that lipid A exerts its inductive effects by increasing cyclic AMP levels in cells. In contrast to what is observed by using other strains of mice, mature B lymphocytes from C3H/HeJ mice do not support a mitogenic response to lipid A. The subpopulation of B lymphocytes in C3H/HeJ mice that normally respond mitogenically to LPS not only appear to lack an LPS-response mechanism utilized in the mitogenic pathway, but they lack the LPS-response pathway of the immature B cell types. A lipid A-bound protein (LAP) induces both the expression of Ia and a mitogenic response in the different subpopulations of B lymphocytes from C3H/HeJ and C3H/DiSn mice. The genetic defect in C3H/HeJ mice that limits responses to lipid A may be associated with a receptor that is normally expressed on many different cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号