首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schwann cells cocultured with sensory neurons in a serum-free medium accumulate a single species of radiolabeled heparan sulfate proteoglycan (HS-PG) during incubation in medium containing 35SO4. This HS-PG was poorly extracted from cultures by solutions containing 1% Triton X-100 in low salt buffer or by solutions containing 1 M KCl, 4 M urea plus dithiothreitol, 1 mM Tris-HCl, 5 mM EDTA, or 100 micrograms/ml of heparin. The HS-PG was efficiently extracted, however, by 1% Triton X-100 in the presence of 1 M KCl or by 1% deoxycholate. These treatments solubilize both cell membranes and the Schwann cell cytoskeleton. In intact cells the HS-PG was digested by trypsin, indicating it was at least partially exposed on the cell surface. When solubilized HS-PG was applied to a column of octyl-sepharose CL-4B, more than 90% was retained by the column, but was quantitatively eluted by a solution containing 1% Triton X-100. In addition, the solubilized HS-PG could be incorporated into artificial phospholipid vesicles. These results indicate the HS-PG is an integral plasma membrane protein. The inability of low ionic strength solutions containing Triton X-100 to solubilize the HS-PG suggested it was bound to an additional structure. To determine whether the HS-PG was associated with the cytoskeleton we isolated cytoskeletons by detergent lysis of cells and centrifugation. The major protein components of isolated cytoskeletons were spectrin (Mr 225,000), vimentin (Mr 58,000), and actin (Mr 45,000). When 35SO4-labeled cells were used to prepare cytoskeletons approximately 80% of the total HS-PG was recovered in the cytoskeleton fraction. These results suggest the HS-PG is an externally exposed integral plasma membrane protein that is anchored to the Schwann cell cytoskeleton.  相似文献   

2.
Staphylococcus aureus mutants resistant to the nonionic detergent Triton X-100, isolated from the wild-type strain H and the autolysin-deficient strain RUS3, could grow and divide in broth containing 5% (vol/vol) Triton X-100, while growth of the parental strains was markedly inhibited above the critical micellar concentration (0.02%) of the detergent. Growth-inhibitory concentrations of Triton X-100 killed wild-type cells without demonstrable cellular lysis. Triton X-100 stimulated autolysin activity of S. aureus cells under nongrowing conditions, and this lytic response was markedly reduced in energy-poisoned cells. In contrast, the detergent had no effect on the activity of autolysins in cell-free systems, and growth in the presence of Triton X-100 did not alter either the cellular autolysin activity or the susceptibility of cell walls to exogenous lytic enzymes. Treatment with either Triton X-100 or penicillin G in the growth medium stimulated release of predominantly acylated intracellular lipoteichoic acid and sensitized staphylococci to Triton X-100-induced autolysis. There was no significant difference in the cell wall and membrane compositions or Triton X-100 binding between the parental strains and the resistant mutants. The resistant mutant TXR1, derived from S. aureus H, had a higher level of L-alpha-glycerophosphate dehydrogenase activity, and its oxygen uptake was more resistant to inhibition by a submicellar concentration (0.008%) of Triton X-100. Growth in the presence of subinhibitory concentrations of Triton X-100 rendered S. aureus H cells phenotypically resistant to the detergent and greatly stimulated the level of oxygen uptake. Membranes isolated from such cells exhibited enhanced activity of the respiratory enzymes succinic dehydrogenase and L-alpha-glycerophosphate dehydrogenase.  相似文献   

3.
Rat liver mitochondrial inner and outer membranes were subjected to the solubilizing effect of the nonionic detergent Triton X-100 under various conditions. After centrifugation, the supernatants (containing the solubilized fraction) and pellets were characterized chemically and/or ultrastructurally. The detergent seems to act by inducing a phase transition from membrane lamellae to mixed protein-lipid-detergent micelles. Different electron-micro-scopy patterns are shown by the inner membranes after treatment with different amounts of surfactant, whereas the corresponding images from outer membranes vary but slightly. Selective solubilization of various components is observed, especially in the case of the inner membrane. Some membrane lipids (e.g., cardiolipin) are totally solubilized at detergent concentrations when others, such as sphyngomyelin, remain in the membrane. Other inner-membrane components (flavins, cytochromes, coenzymeQ) show different solubilization patterns. This allows the selection of conditions for optimal solubilization of a given membrane component with some degree of selectivity. The influence of Triton X-100 on various mitochondrial inner-membrane enzyme activities was studied. The detergent seems to act especially through disruption of the topology of the functional complexes, although the activity of the individual enzymes appears to be preserved. Relatively simple enzyme activities, such as ATPase, are more or less solubilized according to the detergent concentration, whereas the more complex succinate-cytochromec reductase activity practically disappears even at low Triton X-100 concentrations.  相似文献   

4.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

5.
We developed a method for extracting raft-like, liquid-ordered membranes from the particulate fraction prepared from porcine trachealis smooth muscle. This fraction, which contains most of the plasma membrane in this tissue, was homogenized in the presence of cold 0.5% Triton X-100. After centrifugation, membranes containing high contents of sphingomyelin (SM) and cholesterol and low phosphatidylcholine (PC) contents remained in the pellet. Thirty-five millimolar octyl glucoside (OG) extracted 75% of these membranes from the Triton X-100-resistant pellet. These membranes had low buoyant densities and accounted for 28% of the particulate fraction lipid. Their lipid composition, 22% SM, 60% cholesterol, 11% phosphatidylethanolamine, 8% PC, <1% phosphatidylinositol, and coisolation with 5'-nucleotidase and caveolin-1 suggest that they are liquid-ordered membranes. We compared characteristics of OG and Triton X-100 extractions of the particulate fraction. In contrast to Triton X-100 extractions, membranes released from the particulate fraction by OG were mainly collected in low buoyant fractions at densities ranging from 1.05 to 1.11 g/ml and had phospholipid and cholesterol contents consistent with a mixture of liquid-ordered and liquid-disordered membranes. Thus, OG extraction of apparent liquid-ordered membranes from Triton X-100-resistant pellets was not due to selective extraction of these membranes. Low buoyant density appears not to be unique for liquid-ordered membranes.  相似文献   

6.
Bovine brain contains two diacylglycerol lipases. One is localized in purified microsomes and the other is found in the plasma membrane fraction. The microsomal enzyme is markedly stimulated by the non-ionic detergent, Triton X-100, and Ca2+, whereas the plasma membrane diacylglycerol lipase is strongly inhibited by Triton X-100 and Ca2+ has no effect on its enzymic activity. Both enzymes were solubilized using 0.25% Triton X-100. The solubilized enzymes followed Michaelis-Menten kinetics. The apparent Km values for microsomal and plasma membrane enzymes are 30.5 and 12.0 microM respectively. Both lipases are strongly inhibited by RHC 80267, with Ki values for microsomal and plasma membrane diacylglycerol lipases of 70 and 43 microM, respectively. The retention of microsomal diacylglycerol lipase on a concanavalin A-Sepharose column and its elution by methyl alpha-D-mannoside indicates the glycoprotein nature of this enzyme.  相似文献   

7.
Immunofluorescence microscopy of cultured animal cells is often performed after detergent permeabilization of formaldehyde-fixed cellular membranes so that antibodies may have access to intracellular antigens. A comparison was made of the ability of several detergents, after formaldehyde fixation, to affect localization of intracellular proteins or to permeabilize different organelles to antibodies. Saponin, a detergent-like molecule that can permeabilize cholesterol-containing membranes, was also used. Four monoclonal antibodies were found to have a bright, discrete fluorescence localization with saponin alone, but were almost undetectable when the cells were treated with nonionic detergents such as Triton X-100 or NP-40. These immunoglobulin G antibodies included two against lysosomal membrane glycoproteins, one against an integral membrane protein found in the plasma membrane and endocytic vesicles, and one against a membrane protein in the endoplasmic reticulum and the nuclear envelope. However, antigens localized in mitochondria and the nucleus required the use of a detergent such as Triton X-100 for their detection. The detection of a number of other membrane or cytoplasmic proteins was unaffected by Triton X-100 treatment. It was concluded that nonionic detergents such as Triton X-100 cause artifactual loss of detection of some membrane proteins, and saponin is a favorable alternative reagent for immunofluorescence detection of intracellular membrane antigens in many organelles.  相似文献   

8.
Homogenates of bovine adrenal medullae hydrolyzed exogenous sphingomyelin at 4.3 +/- 1.6 nmol X mg-1 X min-1 and 97% of this sphingomyelinase activity was sedimentable at 110,000 g. The sphingomyelinase had a broad pH optimum centered at pH 7. Enzymatic activity was maximal with 80 microM added Mn2+; Mg2+ supported less than half maximal activity and both Ca2+ and EDTA inhibited activity. No activity was detected in the absence of Triton X-100. Response to detergent was biphasic with dose-dependent stimulation from 0.02% to 0.05% Triton X-100 followed by inhibition with increasing concentrations of detergent. Activity in response to detergent was also modulated by protein concentration. Sphingomyelinase activity was associated with a plasma membrane-microsomal fraction. Phosphatidylcholine was not hydrolyzed under optimal conditions for sphingomyelin hydrolysis and a variety of other conditions. Neutral-active sphingomyelinase activity in adrenal medulla was similar in magnitude to that observed in other non-neural bovine tissues. This study demonstrates the presence of a potent neutral-active sphingomyelinase in a plasma membrane-microsomal fraction of bovine adrenal medulla. This enzyme may be involved in membrane fusion and lysis during catecholamine secretion through its ability to alter membrane composition.  相似文献   

9.
Pseudomonas pseudoalcaligenes can only form d-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on d-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the d-malate production activity, until the maximal malease activity was reached. Incubation of P. pseudoalcaligenes cells with Triton X-100 also resulted in an increase in the protein concentration of the supernatant, indicating that cell lysis had occurred. The rate at which the d-malate production activity increased was dependent on the Triton X-100 concentration and on the cell density. Also the rate at which lysis occurred depended on the Triton X-100 concentration.  相似文献   

10.
In order to study the "sidedness" of the ligands of the Na+, K+-ATPase in the phosphorylation from [32P]ATP, tight vesicles were prepared from guinea pig kidney and partially purified by a two-stage sucrose and Ficoll gradient centrifugation procedure. These vesicles were derived presumably from plasma membrane fragments resealed after the initial disruption of the cells during homogenization. Tightness of the vesicles was estimated according to activation by the nonionic detergent, Triton X-100. Treatment with Triton X-100 increased both the activity of the Na+, K+-ATPase and its Na+-dependent phosphorylation from [32P]ATP at least three-fold. Activation of both functions also appeared when the vesicles were shocked osmotically. These results suggest that the preparation contains a major population of tight normal vesicles (approximately 75%) in which the phosphorylation site faces the intravesicular solution. In the response to ouabain breakdown of the phosphoenzyme was inhibited in vesicles treated with Triton X-100 but not in intact ones as if ouabain could not get to its binding site. Correspondingly in phosphorylation from ATP pretreatment with ouabain in the presence of inorganic phosphate produced less inhibition in intact vesicles than in those disrupted with Triton X-100 beforehand. These data suggest the presence of an everted vesicle fraction in the preparation (approximately 20%). Apparently only a small fraction of the vesicles was leaky. In the everted vesicles the action of K+ on the phosphoenzyme was slow. In order to accelerate the dephosphorylation in intact vesicles as effectively as in disrupted ones, K+ had to be added before the start of phosphorylation. This supports the view that K+ was acting from the side of the membrane opposite to that where the gamma-phosphoryl group was accepted from ATP.  相似文献   

11.
Ascorbate free-radical reduction by glyoxysomal membranes   总被引:5,自引:2,他引:3       下载免费PDF全文
Glyoxysomal membranes from germinating castor bean (Ricinus communis L. cv Hale) endosperm contain an NADH dehydrogenase. This enzyme can utilize extraorganellar ascorbate free-radical as a substrate and can oxidize NADH at a rate which can support intraglyoxysomal demand for NAD+. NADH:ascorbate free-radical reductase was found to be membrane-associated, and the activity remained in the membrane fraction after lysis of glyoxysomes by osmotic shock, followed by pelleting of the membranes. In whole glyoxysomes, NADH:ascorbate free-radical reductase, like NADH:ferricyanide reductase and unlike NADH:cytochrome c reductase, was insensitive to trypsin and was not inactivated by Triton X-100 detergent. These results suggest that ascorbate free-radical is reduced by the same component which reduces ferricyanide in the glyoxysomal membrane redox system. NADH:ascorbate free-radical reductase comigrated with NADH:ferricyanide and cytochrome c reductases when glyoxy-somal membranes were solubilized with detergent and subjected to rate-zonal centrifugation. The results suggest that ascorbate free-radical, when reduced to ascorbate by membrane redox system, could serve as a link between glyoxysomal metabolism and other cellular activities.  相似文献   

12.
The mechanism by which sub-cortical actin bundles and membranous organelles are immobilised in the cortical cytoplasm of the alga Chara was studied by perfusing cells with a solution containing 1% Triton X-100. Light and scanning electron microscopy and the release of starch grains and chlorophyll-protein complexes indicated that the detergent extensively solubilised the chloroplasts. However, the sub-cortical actin bundles remained in situ even though they were originally separated from the plasma membrane by the chloroplasts. A fibrous layer between chloroplasts and plasma membrane became readily visible after detergent extraction of the cells and could be released by low-ionic-strength ethylenediaminetetraacetic acid, thioglycollate and trypsin. The same treatments applied to cells not subject to detergent extraction released the membrane-bound organelles and actin bundles and no fibrous meshwork was visible on subsequent extraction with Triton. It is, therefore, concluded that a detergent-insoluble cortical cytoskeleton exists and contributes to the immobility of the actin and cortical organelles in the cells.Abbreviation EDTA ethylenediaminetetraacetic acid  相似文献   

13.
The various stages of the interaction between the detergent Triton X-100 (TTX-100) and membranes of whole red blood cells (RBC) were investigated in a broad range of detergent concentrations. The interaction was monitored by RBC hemolysis-assessed by release of intracellular hemoglobin (Hb) and inorganic phosphate-and by analysis of EPR spectra of a fatty acid spin probe intercalated in whole RBC suspensions, as well as pellets and supernatants obtained upon centrifugation of detergent-treated cells. Hemolysis finished at ca. 0.9mM TTX-100. Spectral analysis and calculation of order parameters (S) indicated that a complex sequence of events takes place, and allowed the characterization of various structures formed in the different stages of detergent-membrane interaction. Upon reaching the end of cell lysis, essentially no pellet was detected, the remaining EPR signal being found almost entirely in the supernatants. Calculated order parameters revealed that whole RBC suspensions, pellets, and supernatants possessed a similar degree of molecular packing, which decreased to a small extent up to 2.5mM detergent. Between 3.2 and 10mM TTX-100, a steep decrease in S was observed for both whole RBC suspensions and supernatants. Above 10mM detergent, S decreased in a less pronounced manner and the EPR spectra approached that of pure TTX-100 micelles. The data were interpreted in terms of the following events: at the lower detergent concentrations, an increase in membrane permeability occurs; the end of hemolysis coincides with the lack of pellet upon centrifugation. Up to 2.5mM TTX-100 the supernatants consist of a (very likely) heterogeneous population of membrane fragments with molecular packing similar to that of whole cells. As the detergent concentration increases, mixed micelles are formed containing lipid and/or protein, approaching the packing found in pure TTX-100 micelles. This analysis is in agreement with the models proposed by Lasch (Biochim. Biophys Acta 1241 (1995) 269-292) and by Le Maire and coworkers (Biochim. Biophys. Acta 1508 (2000) 86-111).  相似文献   

14.
Specific activities of succinate:coenzyme Q reductase, ubiquinone:cytochrome c reductase, cytochrome oxidase, succinate:cytochrome c reductase, succinate oxidase, and ubiquinol oxidase have been measured in rat liver mitochondria in the presence of Triton X-100. The last three activities are much more sensitive to Triton X-100 than the first ones; the data suggest that the electron transport chain components cannot react with each other in the presence of the detergent. At least in the case of succinate:cytochrome c reductase, reconstitution of the detergent-treated membranes with externally added phospholipids reverses the inhibition produced by Triton X-100. These results support the idea that the respiratory chain components diffuse at random in the plane of the inner mitochondrial membrane; the main effect of the detergent would be to impair lateral diffusion by decreasing the area of lipid bilayer. When detergent-treated mitochondrial suspensions are centrifuged in order to separate the solubilized from the particulate material, only the first three enzyme activities mentioned above are found in the supernatants. After centrifugation, a latent ubiquinol:cytochrome c oxidase activity becomes apparent, whereas the same centrifugation process produces inhibition of cytochrome c oxidase in the presence of certain Triton X-100 concentrations. These effects could be due either to a selective solubilization of regulatory or catalytic subunits or to a conformational change of the enzyme-detergent complex.  相似文献   

15.
The hydrogenase from Paracoccus denitrificans, which is an intrinsic membrane protein, has been solubilised from membranes by Triton X-100. The partial specific volume of the solubilised protein has been determined using sucrose density gradient centrifugation in H2O and 2H2O. The values of the specific volumes of hydrogenase, measured in the presence or absence of Triton X-100, are 0.73 and 0.74 ml . g-1, respectively, indicating that hydrogenase binds much less than one micelle of Triton X-100. The sedimentation coefficient of hydrogenase is increased from 10.4 S to 15.9 S on removal of detergent. The Stokes' radius of hydrogenase, determined by gel filtration on Sepharose 6B, is 5.5 nm in the presence of Triton X-100 compared to 6.7 nm in the absence of detergent. The apparent molecular weight therefore increases from 242,500 to 466,000 on removal of detergent. In the presence of urea and sodium dodecylsulphate, the hydrogenase has an apparent molecular weight of 63,000. The enzyme therefore behaves as a non-covalently linked tetramer in the presence of Triton X-100. Removal of Triton X-100 results in association of tetramers to form octamers.  相似文献   

16.
Phosphatidylinositol (PtdIns)-glycan-specific phospholipase D was purified from bovine and human serum by phase separation in Triton X-114 and by chromatography on DEAE-cellulose, octyl-Sepharose, concanavalin-A-Sepharose, and hydroxyapatite. The purification of the two enzymes was approximately 1200-fold with a recovery of 3-5%. Bovine serum contained about 40 micrograms/ml of PtdIns-glycan-specific phospholipase D, about 10 times more than the amount determined in human serum. PtdIns-glycan-specific phospholipase D is also present in mammalian cerebrospinal fluid and in mammalian milk but to a much lesser extent than in serum. Enzyme from bovine and human serum displayed amphiphilic properties as revealed by sucrose density gradient centrifugation and gel filtration in the absence and presence of detergent. On density gradient centrifugation, both enzymes sedimented with an apparent sedimentation coefficient of about 6.0 S in the presence of 0.1% Triton X-100, and formed aggregates up to 14.5 S in the absence of detergent. Upon gel filtration, the bovine and human enzymes migrated with a Stokes' radius of 6.5 nm and 6.6 nm, respectively, in the presence of Triton X-100. In the absence of Triton X-100, both enzymes gave a Stokes' radius of 8.8 nm. Serial centrifugation of serum at increasing NaBr concentrations revealed that the majority of the enzyme is contained in the high-density lipoprotein fraction. PtdIns-glycan-specific phospholipase D from bovine and human serum contained 27 and 28 N-acetylglucosamine residues, respectively. Treatment with N-glycosidase F decreased the apparent molecular mass of the bovine and human enzyme from 115 and 123 kDa to 91 and 87 kDa, respectively. Sequence analysis of peptides derived from PtdIns-glycan-specific phospholipase D of bovine serum by CNBr cleavage gave 100% identity to the sequence published for the bovine liver enzyme while there was 83% similarity and 74% identity to the sequence of peptides obtained from the human serum enzyme.  相似文献   

17.
The solubilization of human gel-filtered platelets by octyl glucoside, Triton X-100, dodecylsulfate, and deoxycholate was compared from the analysis of (1) cell lysis, (2) marker leakiness, and (3) component solubility. These analyses all revealed that the effect of detergent concentration on the solubilization of platelets by these detergents was exerted in three stages, i.e., the prelytic, lytic, and complete platelet-lysis stages. These analyses also indicated several differences among platelets in these detergents. (i) The ratio of the platelet-saturation concentration (PSC) to critical micellar concentration (CMC) was about 1/2 for octyl glucoside. Triton X-100 and dodecylsulfate, while it was close to 1 for deoxycholate. (ii) Platelets in octyl glucoside. Triton X-100, and dodecylsulfate all showed parallel curves in cell lysis, protein solubilization and marker leakiness, while the platelet lysis in deoxycholate was identical to the phospholipid solubilization. (iii) The solubility curves of various components in Triton X-100 and deoxycholate were parallel. However, the solubility of cholesterol in octyl glucoside was lower than that of protein and phospholipid. In dodecylsulfate, the solubility of phospholipid and cholesterol was very low in comparison with that of protein. In addition, morphological studies using scanning electron microscopy (scanning EM) revealed that the solubilization by octyl glucoside or Triton X-100 might occur via membrane area expansion. On the other hand, the solubilization by dodecylsulfate or deoxycholate showed membrane vesiculation prior to cell lysis. Moreover, in the prelytic stage, the morphological change in platelets in octyl glucoside showed only concentration dependence by swelling to an ellipsoid and then to a sphere. However, the morphological change in platelets in the other three detergents was dependent not only on the detergent concentration but also on prolonged incubation. Specifically, in Triton X-100, the cells initially changed to spiculate discs and then reached their final shape as swollen discs with surface invagination. In dodecylsulfate and deoxycholate the morphological changes were almost the same. The cell initially deformed in shape to a spiculate disc and finally to a stretched-out flat form. The results are discussed according to the bilayer couple hypothesis. Also, in the prelytic stage, these detergents caused inhibition of the response of platelets to collagen and ADP-fibrinogen.  相似文献   

18.
1. The detergent Triton X-100 activates UDP glucuronyltransferase from rat liver in vitro six- to seven-fold with p-nitrophenol as substrate. The enzyme activity when measured in the presence of Triton X-100 is increased significantly by pretreatment of male rats with phenobarbital for 4 days (90mg/kg each day intraperitoneally). If no Triton X-100 is applied in vitro such an increase could not be shown. In all further experiments the enzyme activity was measured after activation by Triton X-100. 2. The K(m) of the enzyme for the substrate p-nitrophenol does not change on phenobarbital pretreatment. 3. When the microsomal fraction from the liver of untreated rats is subfractionated on a sucrose density gradient, 47% of the enzyme activity is recovered in the rough-surfaced microsomal fraction, which also has a higher specific activity than the smooth-surfaced fraction. 4. Of the increase in activity after the phenobarbital pretreatment 50% occurs in the smooth-surfaced fraction, 19% in the rough-surfaced fraction and 31% in the fraction located between the smooth- and rough-surfaced microsomal fractions on the sucrose density gradient. 5. The latency of the enzyme in vitro, as shown by the effect of the detergent Triton X-100, is discussed in relation to the proposed heterogeneity of UDP glucuronyltransferase.  相似文献   

19.
Treatment of a partially purified preparation of cell walls of Escherichia coli with Triton X-100 at 23 C resulted in a solubilization of 15 to 25% of the protein. Examination of the Triton-insoluble material by electron microscopy indicated that the characteristic morphology of the cell wall was not affected by the Triton extraction. Contaminating fragments of the cytoplasmic membrane were removed by Triton X-100, including the fragments of the cytoplasmic membrane which were normally observed attached to the cell wall. Treatment of a partially purified cytoplasmic membrane fraction with Triton X-100 resulted in the solubilization of 60 to 80% of the protein of this fraction. Comparison of the Triton-soluble and Triton-insoluble proteins from the cell wall and cytoplasmic membrane fractions by polyacrylamide gel electrophoresis after removal of the Triton by gel filtration in acidified dimethyl formamide indicated that the detergent specifically solubilized proteins of the cytoplasmic membrane. The proteins solubilized from the cell wall fraction were qualitatively identical to those solubilized from the cytoplasmic membrane fraction, but were present in different proportions, suggesting that the fragments of cytoplasmic membrane which are attached to the cell wall are different in composition from the remainder of the cytoplasmic membrane of the cell. Treatment of unfractionated envelope preparations with Triton X-100 resulted in the solubilization of 40% of the protein, and only proteins of the cytoplasmic membrane were solubilized. Extraction with Triton thus provides a rapid and specific means of separating the proteins of the cell wall and cytoplasmic membrane of E. coli.  相似文献   

20.
UPAR is a GPI anchored protein, which is found in both lipid rafts and in more fluid regions of the plasma membrane. We have studied the role of the ligand uPA on uPAR localization and on the composition of the lipid membrane microdomains. We have analyzed the glycosphingolipid environment of uPAR in detergent resistant membrane (DRM) fractions prepared by cell lysis with 1% Triton X-100 and fractionated by sucrose gradient centrifugation obtained from HEK293-uPAR cells. The uPAR specific lipid membrane microdomain has been separated from the total DRM fraction by immunoprecipitation with an anti-uPAR specific antibody under conditions that preserve membrane integrity. We have also tested uPA-induced ERK phosphorylation in the presence of methyl-beta-cyclodextrin, which is known to disrupt lipid rafts by sequestering cholesterol from such domains. Our results show that uPAR is partially associated with DRM and this association is increased by ligands, is independent of the catalytic activity of uPA, and is required for intracellular signalling. In the absence of ligands, uPAR experiences a lipid environment very similar to that of total DRM, enriched in sphingomyelin and glycosphingolipids. However, after treatment of cells with uPA or ATF the lipid environment is strongly impoverished of neutral glycosphingolipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号