首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Females of solitary, nest‐constructing bees determine both sex (haplo‐diploidy) as well as body size (by amount of provision) of each single offspring. 2. According to the Optimal Allocation Theory, females should allocate resources in portions that maximise fitness returns. A key fitness component in bees is body size that is determined solely by the provisions supplied by the mother. 3. The optimal progeny body size relies on different factors in both sexes. In females, provision efficiency is crucial for reproductive success. In males, however, fitness depends primarily on mating success. 4. Provision efficiency of Osmia bicornis L. females depends on the capacity to stow pollen (scopa) and their ability to carry the packed loads. Scopa capacity increases isometrically with body size whereas indices of flight performance (EPI, free lift) decrease. These complementary effects substantially contribute to the adjustment of optimal body size in daughters. 5. The impact of body mass on fitness of males is determined by the mating system. Owing to the opportunistic polygyny in O. bicornis, there was no detectable correlation between body size and male mating success. Consequently, mother bees distribute their provisions to many, but small sons to increase the number of descendant competitors in the race for matings. Optimal body size in sons is a trade‐off between a large male advantage in rare scrambles over receptive females and small‐size‐related disadvantages in viability.  相似文献   

2.
1. Maternal investment can be influenced by several factors, especially maternal quality and possibilities for future reproduction. Mass provisioning Hymenoptera are an excellent group for measuring maternal investment because mothers distribute food sources to each brood cell for each offspring separately. Generally in aculeate Hymenoptera, larger females produce larger offspring and invest more in female offspring than in male offspring. 2. This study investigated patterns of maternal investment in Ceratina chalcites, which has an uncommon type of sexual size dimorphism in Hymenoptera: on average, males are heavier than females. It was found that larger females produce a significantly higher proportion of male offspring, as males are the costlier sex in this species. 3. Facultative nest guarding by females was observed. Females can guard offspring until adulthood, as is typical for bees of genus Ceratina (34.43% of nests); however, in the majority of cases (65.56% of nests), females plug and abandon the nest. Significant differences were found in the amount of investment between guarded and unguarded nests. Guarded nests had a greater number of provisioned brood cells and a higher proportion of male offspring. It is suggested that mothers have two facultative strategies – either she makes a large investment in the offspring of one nest or she abandons the first nest and carries out a second nesting elsewhere.  相似文献   

3.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

4.
Individuals that invest more in immunity may not be able to invest as much in o\ther life history traits. The overall effects on fitness depend on the balance of investment in life history traits and unnecessary investment in immunity may lower fitness. Adult mealworm beetles (Tenebrio molitor L.) modulate their investment according to the perceived risk of infection as larvae; the amount of investment can be assessed by body coloration. This prophylactic investment in immunity can be used to assess the costs of investment when no immune challenge is present. Whether investment in immunity is traded off against sperm competitive ability, another important fitness trait in insects, was investigated. Males that had invested more in immunity (dark males) competed against males that had invested less (light males) for fertilization of offspring. Dark males did lose sperm precedence over time, whereas light males did not. However, this decrease in sperm offensive ability may not result in decreased fitness for darker males under normal female mating frequencies; the decrease in offspring did not occur for 1 week, but females that have constant access to males mate once a day, which would negate any long‐term effects of male mating order. Thus, prophylactic investment in immunity does not produce immediate reductions in a male's ability to gain fertilizations. The costs to immune investment may be born by other fitness traits in T. molitor.  相似文献   

5.
The evolution and expression of mate choice behaviour in either sex depends on the sex‐specific combination of mating costs, benefits of choice and constraints on choice. If the benefits of choice are larger for one sex, we would expect that sex to be choosier, assuming that the mating costs and constraints on choice are equal between sexes. Because deliberate inbreeding is a powerful genetic method for experimental manipulation of the quality of study organisms, we tested the effects of both male and female inbreeding on egg and offspring production in Drosophila littoralis. Female inbreeding significantly reduced offspring production (mostly due to lower egg‐to‐adult viability), whereas male inbreeding did not affect offspring production (despite a slight effect of paternal inbreeding on egg‐to‐adult viability). As inbreeding depressed female quality more than male quality, the benefits of mate choice were larger for males than for females. In mate choice experiments, inbreeding did not affect male mating success (measured as a probability to be accepted as a mate in a large group), suggesting that females did not discriminate among inbred and outbred males. In contrast, female mating success was affected by inbreeding, with outbred females having higher mating success than inbred females. This result was not explained by lower activity of inbred females. Our results show that D. littoralis males benefit from mating with outbred females of high genetic quality and suggest adaptive male mate choice for female genetic quality in this species. Thus, patterns of mating success in mate choice trials mirrored the benefits of choice: the sex that benefited more from choice (i.e. males) was more choosy.  相似文献   

6.
Females that invest adaptively in their offspring are predicted to channel more resources to the sex that will be at an advantage in the prevailing environmental conditions. Here, we report, for the first time, that female Trinidadian guppy, Poecilia reticulata, respond in reproductively distinct ways when faced with differences in operational sex ratio. We show that females assigned to a female‐biased sex ratio produce larger male offspring than females in an environment in which males predominate. Given the link between size at birth and fitness, and the marked reproductive skew in this species, larger male offspring are expected to have reproductive advantages in guppy populations with an excess of females. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 414–419.  相似文献   

7.
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more‐competitive sperm. This latter “sexy‐sperm” hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy‐sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy‐sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis.  相似文献   

8.
To study whether offspring sex is related to the amount of resources invested in eggs we performed an experiment on zebra finches, Taeniopygia guttata. By manipulating their food supply, we forced two groups of females either to increase or to decrease investment in subsequent eggs. Since zebra finches are sexually dimorphic and the reproductive value of the sexes may vary with maternal nutritional status, we predicted that females would adjust the sex of their offspring to egg quality. Females that received poor-quality food for 7 weeks before egg laying, then food supplemented with proteins after they laid the first egg, significantly increased the mass of subsequent eggs. An increase of egg mass with laying sequence was less pronounced in females that received high-quality food before laying and experienced food deterioration after starting to lay. The proportion of sons in subsequent eggs tended to increase in the latter group (although this was marginally significant) but was not related to laying sequence in the other group: these patterns differed significantly between the groups. Offspring sex was not related to egg mass, but newly hatched male chicks were heavier than female chicks. Furthermore, the hatching success of male eggs was lower than that of female eggs. We suggest that differential hatching success of the sexes and sex differences in mass at hatching may constitute important factors shaping brood sex ratios. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

9.
In the twig‐nesting carpenter bee, Ceratina calcarata, body size is an important component of maternal quality, smaller mothers producing significantly fewer and smaller offspring than larger mothers. As mothers precisely control the sex and size of each offspring, smaller mothers might compensate by preferentially allocating their investment towards sons. We investigated whether variation in maternal quality leads to variation in sex allocation patterns. At the population level, the numerical sex ratio was 57% male‐biased (1.31 M/F), but the investment between the sexes was balanced (1.02 M/F), because females are 38% larger than males (1.28 F/M). Maternal body size explained both sex allocation pattern and size variation among offspring: larger mothers invested more in individual progeny and produced more female offspring than smaller mothers. Maternal investment in offspring of both sexes decreased throughout the season, probably as a result of increasing maternal wear and age. The exception to this pattern was the curious production of dwarf females in the first two brood cell positions. We suggest that the sex ratio distribution reflects the maternal body size distribution and a constraint on small mothers to produce small broods. This leads to male‐biased allocation by small females, to which large mothers respond by biasing their allocation towards daughters.  相似文献   

10.
According to theory, in species in which male variance in reproductive success exceeds that of the females, sons are more costly to produce; females mated with high quality males or those in better condition should produce more sons. In monogamous species, however, the variance in the reproductive success of the two sexes is often similar and mate choice is often mutual, making predictions regarding sex allocation more difficult. In the rock sparrow Petronia petronia, both males and females have a sexually selected yellow patch on the breast, whose size correlates with individual body condition. We investigated whether the brood sex ratio co‐varies with the size of the yellow patch of the father and the mother in a sample of 173 broods (818 chicks) over 8 breeding seasons. While the size of the yellow patch of the mother and the father did not predict per se a deviation from the expected 1:1 sex ratio, brood sex ratios were predicted by the interaction of male and female yellow patch size. This result is surprising, as the ornament is sexually selected by both males and females as an indicator of quality in both sexes and should therefore be inherited by all offspring irrespective of their sex. It indirectly suggests that other sex‐specific traits associated with patch size (e.g. polygyny in males and fecundity in females) may explain the sex allocation bias observed in rock sparrows. Thus, female individual quality alone, as expressed through the size of the yellow patch, was not associated with the biases in sex ratios reported in this study. Our results rather suggest that sex allocation occurs in response to male attractiveness in interaction with female attractiveness. In other words, females tend to preferentially allocate towards the sex of the parent with more developed ornament within the pair.  相似文献   

11.
In this study, the effects of maternal age, diet, and size on offspring sex ratio were investigated for the solitary egg parasitoid, Anaphes nitens Girault (Hymenoptera: Mymaridae), both outdoors, during the winter, and inside a climatic chamber under favourable constant conditions. During the winter of 2005–2006, each of seven groups containing 40 1‐day‐old females was mated and randomly distributed among two treatments: (treatment 1) a droplet of undiluted honey ad libitum + one fresh egg capsule of the snout beetle Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) as host; (treatment 2) drops of water + one fresh egg capsule of G. scutellatus. We recorded the lifetime fecundity, the daily sex allocation, and the lifetime offspring sex ratio to study the existence of a relationship with maternal characteristics. Moreover, we assessed the effect of location (outdoors vs. indoors) and group (groups are representative of early, mid, and late winter) on sex ratio. The most important factor that biased the sex ratio was maternal body size: larger females of both treatments produced more female offspring. As females of A. nitens could gain more advantage than males from body size, larger mothers have a higher fitness return if they produce more daughters. The effect of the treatment was significant: starved females produced more females. Location and group were not significant. Fecundity and sex ratio were age dependent. Old mothers that received honey (treatment 1) had fewer offspring and a more male‐biased offspring sex ratio, probably due to reproductive senescence and sperm depletion. Starved females (treatment 2) experienced reproductive decline earlier, perhaps because they invested more energy in maintenance rather than in reproduction.  相似文献   

12.
The prediction of Charnov et al.'s (1981) host-size model that there should be a negative relationship between host size and wasp sex ratio (proportion sons) was supported for Spalangia cameroni, a solitary parasitoid wasp. The relationship was shown to be a result of offspring sex manipulation by females in response to host size rather than a result of differential mortality of the sexes. A major assumption of the host-size model is that host size has a greater effect on the ultimate reproductive success of emerging female wasps than of males. This assumption was not supported. Host size had a positive effect on the size of both male and female S. cameroni. However, neither host size nor wasp size affected longevity, production of offspring by females, or ability of males to compete for mates. Host size may differentially affect the reproductive success of female and male wasps through effects on other aspects of reproductive success. Tests of the assumptions of offspring sex-ratio manipulation hypotheses are scarce but critical, not only for parasitoid wasps, but also for other organisms.  相似文献   

13.
Across animal taxa, reproductive success is generally more variable and more strongly dependent upon body condition for males than for females; in such cases, parents able to produce offspring in above‐average condition are predicted to produce sons, whereas parents unable to produce offspring in good condition should produce daughters. We tested this hypothesis in the collared flycatcher (Ficedula albicollis) by cross‐fostering eggs among nests and using the condition of foster young that parents raised to fledging as a functional measure of their ability to produce fit offspring. As predicted, females raising heavier‐than‐average foster fledglings with their social mate initially produced male‐biased primary sex ratios, whereas those raising lighter‐than‐average foster fledglings produced female‐biased primary sex ratios. Females also produced male‐biased clutches when mated to males with large secondary sexual characters (wing patches), and tended to produce male‐biased clutches earlier within breeding seasons relative to females breeding later. However, females did not adjust the sex of individuals within their clutches; sex was distributed randomly with respect to egg size, laying order and paternity. Future research investigating the proximate mechanisms linking ecological contexts and the quality of offspring parents are able to produce with primary sex‐ratio variation could provide fundamental insight into the evolution of context‐dependent sex‐ratio adjustment.  相似文献   

14.
Atlantic salmon (Salmo solar, Salmonidae) show a diversity of life history, behavioural and morphological adaptations for reproduction which have evolved as an outcome of competition to maximize reproductive success. Reproductive traits of females have been shaped principally by natural selection for offspring production and survival, those of males by sexual selection for access to matings. Female Atlantic salmon invest approximately six times more energy in offspring production (i.e. gonads) than males and face an important trade-off between number and size of eggs to produce that will maximize the number of surviving offspring. Timing of breeding and the construction of nests appear adapted to increase offspring survival. The most important determinant of female breeding success is body size because it affords high fecundity, access to breeding territories and decreased probability of nest destruction. Asynchronous female spawning and the male ability to spawn rapidly and repeatedly results in male-biased operational sex ratios that generate intense male competition for mates. This has likely been responsible for the evolution of elaborate male secondary sexual characters associated with fighting and status signalling. Furthermore, it has given rise, through frequency-dependent selection, to two alternative male breeding phenotypes: (1) large, anadromous males; and (2) small, mature male parr. Anadromous males invest heavily in behavioural activity on the spawning grounds, searching and fighting for mates and courting them, with body size being an important determinant of their breeding success. This behavioural activity carries a heavy cost, as anadromous males have significantly reduced survival relative to females. In contrast, mature male parr invest proportionally more in testes for sperm competition and attempt to sneak access to matings. While this behaviour also carries costs in terms of subsequent growth and survival, male parr are more likely to breed again, either prior to or following a migration to sea, than anadromous males. While knowledge about the breeding of Atlantic salmon is detailed, we are only beginning to understand the ultimate causes and/or functional significances of their reproductive strategies. Predictive models of the life history variation are developing, focusing on the need for empirical study and testing of life history and reproductive patterns.  相似文献   

15.
Sex ratio at conception may be under selection pressure, given that male and female offspring differ in the cost of production or generate different fitness returns under specific conditions. We studied adjustments in the primary, secondary and tertiary sex ratio in house martin Delichon urbicum, which is a sexually monomorphic, socially monogamous, colonial bird. Males of this species engage in extra‐pair copulations with heavy males acquiring the highest fertilization success. We analyzed variation in the sex ratio in relation to clutch size and parental characteristics including body condition, wing length, as well as length and pigmentation of the white rump patch during three breeding seasons. The only variable which significantly explained the variation in the sex ratio was wing length of the social father and mother. The proportion of sons among offspring was positively correlated to wing length of the social father and negatively correlated to mother wing length. Social father wing length positively correlated with mean brood body mass at fledging, which may suggest that females that mated with long‐winged males produced sons, which acquired the highest total fertilization success. Consequently, our results indicate that house martin females may adaptively adjust offspring sex composition at egg laying in relation to the characteristics of their social mate.  相似文献   

16.
In multimale groups where females mate promiscuously, male–infant associations have rarely been studied. However, recent studies have shown that males selectively support their offspring during agonistic conflicts with other juveniles and that father's presence accelerates offspring maturation. Furthermore, it was shown that males invest in unrelated infants to enhance future mating success with the infant's mother. Hence, infant care might provide fitness gain for males. Here, we investigate male–infant associations in rhesus macaques (Macaca mulatta), a primate with low paternity certainty as females mate with multiple partners and males ensure paternity less efficiently through mate‐guarding. We combined behavioural data with genetic paternity analyses of one cohort of the semi‐free‐ranging population of Cayo Santiago (Puerto Rico) and recorded affiliative and aggressive interactions between focal subjects and adult males from birth to sexual maturation (0–4 years) of focal subjects. Our results revealed that 9.6% of all interactions of focal subjects involved an adult male and 94% of all male–infant interactions were affiliative, indicating the rareness of male–infant aggression. Second and most interestingly, sires were more likely to affiliate with their offspring than nonsires with unrelated infants. This preference was independent of mother's proximity and emphasized during early infancy. Male–infant affiliation rose with infant age and was pronounced between adult males and male rather than female focal subjects. Overall, our results suggest that male–infant affiliation is also an important component in structuring primate societies and affiliation directed towards own offspring presumably represent low‐cost paternal care.  相似文献   

17.
Adaptive Offspring Sex Ratio Depends on Male Tail Length in the Guppy   总被引:1,自引:1,他引:0  
A biased sex ratio in a brood is considered to be an adaptive strategy under certain circumstances. For example, if the expected reproductive success of one sex is greater than that of the other, parents should produce more offspring of the former sex than the latter. A previous study has documented that in the guppy, Poecilia reticulata, the female offspring of males possessing proportionally longer tails exhibit smaller body sizes and show decreased reproductive outputs than those of males having shorter tails. On the other hand, the total lengths of the male offspring of the long‐tailed males are larger because of their longer tails; consequently, they exhibit greater sexual attractiveness to females. Therefore, it has been hypothesized that this asymmetry in the expected reproductive success between the male and female offspring of long‐tailed males may result in a biased sex ratio that is dependent on the tail lengths of their fathers. This hypothesis was tested in the present study. The results showed that the females that mated with long‐tailed males produced more male offspring than those that mated with short‐tailed males. Logistic regression analysis showed that the ratio of tail length to the standard length of the fathers is a determinant factor of the sex of their offspring. These results suggest that the manipulation of the offspring sex ratios by parents enhances the overall fitness of the offspring.  相似文献   

18.
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.  相似文献   

19.
The classical version of the differential allocation hypothesis states that, when females reproduce over their lifetime with partners that differ in their genetic quality, they should invest more in reproduction with high-quality males. However, in species with lifetime monogamy, such as the zebra finch, partner quality will typically remain the same. In this case, the compensatory investment (CI) hypothesis predicts higher investment for low-quality males, because low genetic quality offspring are more dependent on maternal resources. Here, we show that female zebra finches invested more resources, both in terms of egg volume and yolk carotenoid content, when paired to a low genetic quality male, as judged from his previous ability to obtain extra-pair paternity in aviary colonies. We also found that females deposited slightly larger amounts of testosterone into eggs when paired to a low parental quality male, as judging from his previous success in rearing offspring. This is, to our knowledge, the first experimental support for the CI hypothesis in a species with lifetime monogamy. We stress that in more promiscuous species, the benefits of classical differential allocation may partly be neutralized by the supposed benefits of CI.  相似文献   

20.
Independent samples of women were surveyed to test Trivers and Willard’s hypothesis that the mother’s condition and her ability to invest in her offspring affect the (secondary) sex ratio of her offspring. Patterns of sex ratios (number of males per 100 females) were analyzed in conjunction with four attributes of a mother’s microenvironment: level of health in her community, family structure, relative access to resources, and her birthing history. The results inferentially support the hypothesis that the microenvironment of the woman would act to bias the sex ratio of her offspring. These specific data lend support to Trivers and Willard’s general hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号