首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Threonine 243 of cytochrome P450nor (fungal nitric oxide reductase) corresponds to the 'conserved' Thr in the long I helix of monooxygenase cytochrome P450s. In P450nor, the replacement of Thr243 with Asn, Ala or Val makes the enzymatic activity dramatically reduce. In order to understand the roles of Thr243 in the reduction reaction of NO by P450nor, the crystal structures of three Thr243 mutants (Thr243-->Asn, Thr243-->Val, Thr243-->Ala) of P450nor were determined at a 1.4-A resolution and at cryogenic temperature. However, the hydrogen-bonding pattern in the heme pocket of these mutants is essentially similar for that of the WT enzyme. This suggests that the determination of the structure of the NADH complex of P450nor is required, in order to evaluate the role of Thr243 in its enzymatic reaction. We attempted to crystallize the NADH complex under several conditions, but have not yet been successful.  相似文献   

2.
Fungal nitric-oxide reductase (NOR) is a heme enzyme that catalyzes the reduction of NO to N(2)O through its ferric-NO complex, the first intermediate of the catalysis. Crystal structures of the ferric-NO forms of wild type (WT) fungal NOR, and of the Ser(286) --> Val and Ser(286) --> Thr mutant enzymes were determined to 1.7-A resolution at cryogenic temperature (100 K). This shows a slightly tilted and bent NO binding to the heme iron, in sharp contrast to the highly bent NO coordination found in ferrous hemoproteins. In the WT structure, a specific hydrogen-bonding network that connects the active site to the solvent was identified, H(2)O(Wat(74))-Ser(286)-H(2)O(Wat(33))-Asp(393)-solvent. Wat(74) is located 3.10 A from the iron-bound NO. Replacement of Ser(286) with Val or Thr scarcely alters the NO coordination structure but expels the water molecules, Wat(74) from the active site. The Asp(393) mutation does not influence the position of Wat(74), but disrupts the hydrogen-bonding network at Wat(33), as evidenced by enzymatic, kinetic, and spectroscopic (resonance Raman and IR) results. The structural changes observed upon the Ser(286) or the Asp(393) mutation are consistent with the dramatic loss of the enzymatic activity for the NO reduction of fungal NOR. We have conclusively identified the water molecule, Wat(74), adjacent to the iron-bound NO as a proton donor to the Fe-NO moiety. In addition, we find the hydrogen-bonding network, H(2)O(Wat(74))-Ser(286)-H(2)O(Wat(33))-Asp(393), as a proton delivery pathway in the NO reduction reaction by fungal NOR.  相似文献   

3.
Blobaum AL  Lu Y  Kent UM  Wang S  Hollenberg PF 《Biochemistry》2004,43(38):11942-11952
tert-Butyl acetylene (tBA) is a mechanism-based inactivator of cytochromes P450 2E1 and 2E1 T303A; however, the inactivation of the T303A mutant could be reversed by overnight dialysis. The inactivation of P450 2E1 T303A, but not the wild-type 2E1 enzyme, by tBA resulted in the formation of a novel reversible acetylene-iron spectral intermediate with an absorption maximum at 485 nm. The formation of this intermediate required oxygen and could be monitored spectrally with time. Although the alternate oxidants tert-butyl hydroperoxide (tBHP) and cumene hydroperoxide (CHP) supported the inactivation of wild-type P450 2E1 by tBA in a reductase- and NADPH-free system, only tBHP supported the inactivation of the 2E1 T303A mutant. The losses in enzymatic activity occurred concomitantly with losses in the native P450 heme, which were accompanied by the formation of tBA-adducted heme products. The inactivations supported by tBHP and CHP were completely irreversible with overnight dialysis. Spectral binding constants (K(s)) for the binding of tBA to the 2E1 P450s together with models of the enzymes with the acetylenic inactivator bound in the active site suggest that the T303A mutation results in increased hydrophobic interactions between tBA and nearby P450 residues, leading to a higher binding affinity for the acetylene compound in the mutant enzyme. Together, these data support a role for the highly conserved T303 residue in proton delivery to the active site of P450 2E1 and in the inactivation of the 2E1 P450s by small acetylenic compounds.  相似文献   

4.
Arg and Lys residues are concentrated on the distal side of cytochrome P450nor (P450nor) to form a positively charged cluster facing from the outside to the inside of the distal heme pocket. We constructed mutant proteins in which the Arg and Lys residues were replaced with Glu, Gln, or Ala. The results showed that this cluster plays crucial roles in NADH interaction. We also showed that some anions such as bromide (Br(-)) perturbed the heme environment along with the reduction step in P450nor-catalyzed reactions, which was similar to the effects caused by the mutations. We determined by x-ray crystallography that a Br(-), termed an anion hole, occupies a key region neighboring heme, which is the terminus of the positively charged cluster and the terminus of the hydrogen bond network that acts as a proton delivery system. A comparison of the predicted mechanisms between the perturbations caused by Br(-) and the mutations suggested that Arg(174) and Arg(64) play a crucial role in binding NADH to the protein. These results indicated that the positively charged cluster is the unique structure of P450nor that responds to direct interaction with NADH.  相似文献   

5.
The first structure of a P450 to an atomic resolution of 1.06 A has been solved for CYP121 from Mycobacterium tuberculosis. A comparison with P450 EryF (CYP107A1) reveals a remarkable overall similarity in fold with major differences residing in active site structural elements. The high resolution obtained allows visualization of several unusual aspects. The heme cofactor is bound in two distinct conformations while being notably kinked in one pyrrole group due to close interaction with the proline residue (Pro(346)) immediately following the heme iron-ligating cysteine (Cys(345)). The active site is remarkably rigid in comparison with the remainder of the structure, notwithstanding the large cavity volume of 1350 A(3). The region immediately surrounding the distal water ligand is remarkable in several aspects. Unlike other bacterial P450s, the I helix shows no deformation, similar to mammalian CYP2C5. In addition, the positively charged Arg(386) is located immediately above the heme plane, dominating the local structure. Putative proton relay pathways from protein surface to heme (converging at Ser(279)) are identified. Most interestingly, the electron density indicates weak binding of a dioxygen molecule to the P450. This structure provides a basis for rational design of putative antimycobacterial agents.  相似文献   

6.
During the monooxygenase reaction catalyzed by cytochrome P450cam (P450cam), a ternary complex of P450cam, reduced putidaredoxin, and d-camphor is formed as an obligatory reaction intermediate. When ligands such as CO, NO, and O2 bind to the heme iron of P450cam in the intermediate complex, the EPR spectrum of reduced putidaredoxin with a characteristic signal at 346 millitesla at 77 K changed into a spectrum having a new signal at 348 millitesla. The experiment with O2 was carried out by employing a mutant P450cam with Asp251 --> Asn or Gly where the rate of electron transfer from putidaredoxin to oxyferrous P450cam is considerably reduced. Such a ligand-induced EPR spectral change of putidaredoxin was also shown in situ in Pseudomonas putida. Mutations introduced into the neighborhood of the iron-sulfur cluster of putidaredoxin revealed that a Ser44 --> Gly mutation mimicked the ligand-induced spectral change of putidaredoxin. Arg109 and Arg112, which are in the putative putidaredoxin binding site of P450cam, were essential for the spectral changes of putidaredoxin in the complex. These results indicate that a change in the P450cam active site that is the consequence of an altered spin state is transmitted to putidaredoxin within the ternary complex and produces a conformational change of the 2Fe-2S active center.  相似文献   

7.
The interaction of nitric oxide with cytochrome P450 BM3 from Bacillus megaterium has been analyzed by spectroscopic techniques and enzyme assays. Nitric oxide ligates tightly to the ferric heme iron, inducing large changes in each of the main visible bands of the heme and inhibiting the fatty acid hydroxylase function of the protein. However, the ferrous adduct is unstable under aerobic conditions, and activity recovers rapidly after addition of NADPH to the flavocytochrome due to reduction of the heme via the reductase domain and displacement of the ligand. The visible spectral properties revert to that of the oxidized resting form. Aerobic reduction of the nitrosyl complex of the BM3 holoenzyme or heme domain by sodium dithionite also displaces the ligand. A single electron reduction destabilizes the ferric-nitrosyl complex such that nitric oxide is released directly, as shown by the trapping of released nitric oxide. Aerobically and in the absence of exogenous reductant, nitric oxide dissociates completely from the P450 over periods of several minutes. However, recovery of the nativelike visible spectrum is accompanied by alterations in the catalytic activity of the enzyme and changes in the resonance Raman spectrum. Specifically, resonance Raman spectroscopy identifies the presence of internally located nitrated tyrosine residue(s) following treatment with nitric oxide. Analysis of a Y51F mutant indicates that this is the major nitration target under these conditions. While wild-type P450 BM3 does not form an aerobically stable ferrous-nitrosyl complex, a site-directed mutant of P450 BM3 (F393H) does form an isolatable ferrous-nitrosyl complex, providing strong evidence for the role of this residue in controlling the electronic properties of the heme iron. We report here the spectroscopic characterization of the ferric- and ferrous-nitrosyl complexes of P450 BM3 and describe the use of resonance Raman spectroscopy to identify nitrated tyrosine residue(s) in the enzyme. Nitration of tyrosine in P450 BM3 may exemplify a typical mechanism by which the ubiquitous messenger molecule nitric oxide exerts a regulatory function over the cytochromes P450.  相似文献   

8.
The structure-function relationship in cytochrome P450cam monooxygenase was studied by employing its active site mutant Thr252Ile. X-ray crystallographic analyses of the ferric d-camphor-bound form of the mutant revealed that the mutation caused a structural change in the active site giving an enlarged oxygen-binding pocket that did not contain any hydrophilic group such as the OH group of Thr and H(2)O. The enzyme showed a low monooxygenase activity of ca. 1/10 of the activity of the wild-type enzyme. Kinetic analyses of each catalytic step revealed that the rate of proton-coupled reduction of the oxygenated intermediate of the enzyme, a ternary complex of dioxygen and d-camphor with the ferrous enzyme, decreased to about 1/30 of that of the wild-type enzyme, while the rates of other catalytic steps including the reduction of the ferric d-camphor-bound form by reduced putidaredoxin did not change significantly. These results indicated that a hydrophilic group(s) such as water and/or hydroxyl group in the active site is prerequisite to a proton supply for the reduction of the oxygenated intermediate, thereby giving support for the operation of a proton transfer network composed of Thr252, Asp251, and two other amino acids and water proposed by previous investigators.  相似文献   

9.
The catalysis of cytochrome P450s requires two-electron donation for the activation of an oxygen molecule. Here, we report the enzymatic catalysis of cytochrome P450, CYP119A2 (P450st), from a thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7, with NAD(P)H as an electron donor and no redox partners and the crystallographic analysis of P450st at high resolution. P450st can catalyse styrene epoxidation with either NADH or NADPH as an electron donor. The P450st reaction with NADH exhibited a sequential mechanism. X-ray crystallography at a resolution of 1.94 ? revealed a sufficiently large heme pocket for NAD(P)H binding and a novel contiguous channel from the active site to bulk solvent in the distal heme pocket. The narrow channel may transfer protons or water to the heme pocket even when a bulky compound, such as NAD(P)H, binds in the pocket. In addition, the F/G loop region (Leu151-Glu156), located around the substrate channel, was deleted in the mutant and constructed to improve the accessibility of NAD(P)H to the heme pocket. Kinetic properties of the Δ151-156 mutant were compared with those of the wild-type P450st. The K(m) value of the mutant was about 2 times lower than that of the wild-type. The results indicated that NAD(P)H could provide the electrons for P450st within the heme pocket.  相似文献   

10.
The multidomain fatty-acid hydroxylase flavocytochrome P450 BM3 has been studied as a paradigm model for eukaryotic microsomal P450 enzymes because of its homology to eukaryotic family 4 P450 enzymes and its use of a eukaryotic-like diflavin reductase redox partner. High-resolution crystal structures have led to the proposal that substrate-induced conformational changes lead to removal of water as the sixth ligand to the heme iron. Concomitant changes in the heme iron spin state and heme iron reduction potential help to trigger electron transfer from the reductase and to initiate catalysis. Surprisingly, the crystal structure of the substrate-free A264E heme domain mutant reveals the enzyme to be in the conformation observed for substrate-bound wild-type P450, but with the iron in the low-spin state. This provides strong evidence that the spin-state shift observed upon substrate binding in wild-type P450 BM3 not only is caused indirectly by structural changes in the protein, but is a direct consequence of the presence of the substrate itself, similar to what has been observed for P450cam. The crystal structure of the palmitoleate-bound A264E mutant reveals that substrate binding promotes heme ligation by Glu(264), with little other difference from the palmitoleate-bound wild-type structure observable. Despite having a protein-derived sixth heme ligand in the substrate-bound form, the A264E mutant is catalytically active, providing further indication for structural rearrangement of the active site upon reduction of the heme iron, including displacement of the glutamate ligand to allow binding of dioxygen.  相似文献   

11.
The active site of cytochromes P450 is situated deep inside the protein next to the heme cofactor. Consequently, enzyme specificity and kinetics can be influenced by how substrates pass through the protein to access the active site and how products egress from the active site. We previously analysed the channels between the active site and the protein surface in P450 crystal structures available in October 2003 [R.C. Wade, P.J. Winn, I. Schlichting, Sudarko, A survey of active site access channels in cytochromes P450, J. Inorg. Biochem. 98 (2004) 1175-1182]. Since then, 52 new P450 structures have been made available, including entries for ten isozymes for which structures were not previously available. We present an updated survey covering all P450 crystal structures available in March 2006. This survey shows channels not observed earlier in crystal structures, some of which were identified in previous molecular dynamics simulations. The crystal structures demonstrate how some of the channels can merge when the protein structure opens up resulting in a wide cleft to the active site, caused largely by movements of the F-G helix-loop-helix and the B-C loop. Significant differences were observed between the channels in the crystal structures of the mammalian and bacterial enzymes. The multiplicity of channels suggests possibilities for substrate channelling to and from the P450s.  相似文献   

12.
The nitrogenous pi -acceptor ligand 4-cyanopyridine (4CNPy) exhibits reversible ligation to ferrous heme in the flavocytochrome P450 BM3 (Kd=1.8 microm for wild type P450 BM3) via its pyridine ring nitrogen. The reduced P450-4CNPy adduct displays unusual spectral properties that provide a useful spectroscopic handle to probe particular aspects of this P450. 4CNPy is competitively displaced upon substrate binding, allowing a convenient route to the determination of substrate dissociation constants for ferrous P450 highlighting an increase in P450 substrate affinity on heme reduction. For wild type P450 BM3, Kd(red)(laurate)=82.4 microm (cf. Kd(ox)=364 microm). In addition, an unusual spectral feature in the red region of the absorption spectrum of the reduced P450-4CNPy adduct is observed that can be assigned as a metal-to-ligand charge transfer (MLCT). It was discovered that the energy of this MLCT varies linearly with respect to the P450 heme reduction potential. By studying the energy of this MLCT for a series of BM3 active site mutants with differing reduction potential (Em), the relationship EMLCT + (3.53 x = Em 17,005 cm)(-1) was derived. The use of this ligand thus provides a quick and accurate method for predicting the heme reduction potentials of a series of P450 BM3 mutations using visible spectroscopy, without the requirement for redox potentiometry.  相似文献   

13.
The inactivations of P450 2B4 and the T302A mutant of 2B4 by tert-butyl acetylene (tBA) and the inactivation of 2B4 T302A by tert-butyl 1-methyl-2-propynyl ether (tBMP) have been investigated. tBA and tBMP inactivated both enzymes in a mechanism-based manner with the losses in enzymatic activity corresponding closely to losses in P450 heme. HPLC and ESI-LC-MS analysis detected two different tBA- or tBMP-modified heme products with masses of 661 and 705 Da, respectively. Interestingly, the inactivations of the P450s 2B4 by tBA and tBMP were partially reversible by dialysis, and the tBA- or tBMP-modified heme products could only be observed with ESI-LC-MS/MS when the inactivated samples were acidified prior to analysis, indicating a requirement for protons in the formation of stable heme adducts in both the wild-type and mutant 2B4 enzymes. Results of studies using artificial oxidants to support enzyme inactivation suggest that the oxenoid-iron activated oxygen species is preferentially utilized during the inactivation of the P450s 2B4 by tBA. These results argue against the use of a peroxo-iron species by P450 2B4 T302A. Molecular dynamics studies of wild-type P450 2B4 reveal that contiguous hydrogen bond networks, including structural waters, link a conserved glutamate (E301) to the distal oxygen of the peroxo-heme species via threonine 302. Interestingly, models of 2B4 T302A reveal that a compensatory, ordered hydrogen bond network forms despite the removal of T302. These results indicate that while T302 may play a role in proton delivery in the formation of the oxenoid-iron complex and in the stabilization of acetylene heme adducts in 2B4, it is not essential for proton delivery given the presence of E301 in the binding site.  相似文献   

14.
Hydrogen bond networks, consisting of hydrogen bonded waters anchored by polar/acidic amino acid sidechains, are often present in the vicinity of the oxygen binding clefts of P450s. Density functional and quantum dynamics calculations of a O(2) binding cleft network model of cytochrome P450eryF(CYP107A1) indicate that such structural motifs facilitate ultrafast proton transfer from network waters to the dioxygen of the reduced oxyferrous species via a multiple proton translocation mechanism with barriers of 7-10 kcal/mol on its doublet ground state, and that the energies of the proton transfer reactant and constrained proton transfer products have an electronic and oxidation state dependence [J. Am. Chem. Soc. 124 (2002) 1430]. In the present study, the origin of the oxidation state dependence is shown to have its roots in differential proton affinities while the electronic state dependence of the reduced oxyferrous heme has its origins in subtle differences in network topologies near the transition state of the initial proton transfer event. Relaxed potential surface scans and unconstrained proton transfer product optimizations indicate that the proton transfer product in both the singlet oxyferrous heme and the reduced oxyferrous heme species in a quartet state are not viable stable (bound) states relative to the reactant form. While the proton affinity of H(3)O(+) is sufficient for it to protonate both the oxyferrous and the reduced oxyferrous heme species, hydrogen bond network stabilized water is only capable of protonating the reduced oxyferrous form. This interpretation is substantiated by study of the NO bound reduced ferrous heme of P450nor, which is isoelectronic with the oxyferrous heme and has a similar proton affinity. Density functional calculations on a more extensive O(2) binding cleft model support the multiple proton translocation mechanism of transfer but indicates that the significant negative charge density on the bound dioxygen of the reduced oxyferrous heme species, in its doublet ground state, polarizes the associated hydrogen bond network sufficiently so as to result in short, strong, low-barrier hydrogen bonds. The computed O-H-O bond distances are less than 2.55 A and have a near degeneracy of the proton transfer reactant and initial (sudden) proton transfer products. These low-barrier hydrogen bond features, in addition to the finding of a (zero point uncorrected) barrier of 1.3 kcal/mol, indicate that proton transfer from water to the distal oxygen should be rapid, facile and may not require large curvature tunneling as originally suggested by use of a smaller model. An initial assessment of protonation of the reduced oxyferrous heme distal oxygen by a model of 6-deoxyerythronolide B (6-DEB) indicates it to be low barrier (3.8 kcal/mol) and exothermic (-2.9 kcal/mol). The combined results indicate the plausibility of simultaneous diprotonation of the distal oxygen of the reduced oxyferrous heme, leading to O-O bond scission, using the combined water network and 6-DEB substrate protonation agents.  相似文献   

15.
Lee DS  Park SY  Yamane K  Obayashi E  Hori H  Shiro Y 《Biochemistry》2001,40(9):2669-2677
Alkyl-isocyanides are able to bind to both ferric and ferrous iron of the heme in cytochrome P450, and the resulting complexes exhibit characteristic optical absorption spectra. While the ferric complex gives a single Soret band at 430 nm, the ferrous complex shows double Soret bands at 430 and 450 nm. The ratio of intensities of the double Soret bands in the ferrous isocyanide complex of P450 varies, as a function of pH, ionic strength, and the origin of the enzyme. To understand the structural origin of these characteristic spectral features, we examined the crystallographic and spectrophotometric properties of the isocyanide complexes of Pseudomonas putida cytochrome P450cam and Fusarium oxysporum cytochorme P450nor, since ferrous isocyanide complex of P450cam gives a single Soret band at 453 nm, while that of P450nor gives one at 427 nm. Corresponding to the optical spectra, we observed C-N stretching of a ferrous iron-bound isocyanide at 2145 and 2116 cm(-1) for P450nor and P450cam, respectively. The crystal structures of the ferric and ferrous n-butyl isocyanide complexes of P450cam and P450nor were determined. The coordination structure of the fifth Cys thiolate was indistinguishable for the two P450s, but the coordination geometry of the isocyanide was different for the case of P450cam [d(Fe-C) = 1.86 A, angleFe-C-N = 159 degrees ] versus P450nor [d(Fe-C) = 1.85 A, angleFe-C-N = 175 degrees ]. Another difference in the structures was the chemical environment of the heme pocket. In the case of P450cam, the iron-bound isocyanide is surrounded by some hydrophobic side chains, while, for P450nor, it is surrounded by polar groups including several water molecules. On the basis of these observations, we proposed that the steric factors and/or the polarity of the environment surrounding the iron-bound isocyanide significantly effect on the resonance structure of the heme(Fe)-isocyanide moiety and that differences in these two factors are responsible for the spectral characteristics for P450s.  相似文献   

16.
Cytochrome P450eryF (CYP107A) from Saccaropolyspora ertherea catalyzes the hydroxylation of 6-deoxyerythronolide B, one of the early steps in the biosynthesis of erythromycin. P450eryF has an alanine rather than the conserved threonine that participates in the activation of dioxygen (O(2)) in most other P450s. The initial structure of P450eryF (Cupp-Vickery, J. R., Han, O., Hutchinson, C. R., and Poulos, T. L. (1996) Nat. Struct. Biol. 3, 632-637) suggests that the substrate 5-OH replaces the missing threonine OH group and holds a key active site water molecule in position to donate protons to the iron-linked dioxygen, a critical step for the monooxygenase reaction. To probe the proton delivery system in P450eryF, we have solved crystal structures of ferrous wild-type and mutant (Fe(2+)) dioxygen-bound complexes. The catalytic water molecule that was postulated to provide protons to dioxygen is absent, although the substrate 5-OH group donates a hydrogen bond to the iron-linked dioxygen. The hydrogen bond network observed in the wild-type ferrous dioxygen complex, water 63-Glu(360)-Ser(246)-water 53-Ala(241) carbonyl in the I-helix cleft, is proposed as the proton transfer pathway. Consistent with this view, the hydrogen bond network in the O(2).A245S and O(2) .A245T mutants, which have decreased or no enzyme activity, was perturbed or disrupted, respectively. The mutant Thr(245) side chain also perturbs the hydrogen bond between the substrate 5-OH and dioxygen ligand. Contrary to the previously proposed mechanism, these results support the direct involvement of the substrate in O(2) activation but raise questions on the role water plays as a direct proton donor to the iron-linked dioxygen.  相似文献   

17.
Epothilones are potential anticancer drugs that stabilize microtubules by binding to tubulin in a manner similar to paclitaxel. Cytochrome P450epoK (P450epoK), a heme containing monooxygenase involved in epothilone biosynthesis in the myxobacterium Sorangium cellulosum, catalyzes the epoxidation of epothilones C and D into epothilones A and B, respectively. The 2.10-, 1.93-, and 2.65-A crystal structures reported here for the epothilone D-bound, epothilone B-bound, and substrate-free forms, respectively, are the first crystal structures of an epothilone-binding protein. Although the substrate for P450epoK is the largest of a P450 whose x-ray structure is known, the structural changes along with substrate binding or product release are very minor and the overall fold is similar to other P450s. The epothilones are positioned with the macrolide ring roughly perpendicular to the heme plane and I helix, and the thiazole moiety provides key interactions that very likely are critical in determining substrate specificity. Interestingly, there are strong parallels between the epothilone/P450epoK and paclitaxel/tubulin interactions. Based on structural similarities, a plausible epothilone tubulin-binding mode is proposed.  相似文献   

18.
Nitric oxide reductase cytochrome P450nor catalyzes an unusual reaction, direct electron transfer from NAD(P)H to bound heme. Here, we succeeded in determining the crystal structure of P450nor in a complex with an NADH analogue, nicotinic acid adenine dinucleotide, which provides conclusive evidence for the mechanism of the unprecedented electron transfer. Comparison of the structure with those of dinucleotide-free forms revealed a global conformational change accompanied by intriguing local movements caused by the binding of the pyridine nucleotide. Arg64 and Arg174 fix the pyrophosphate moiety upon the dinucleotide binding. Stereo-selective hydride transfer from NADH to NO-bound heme was suggested from the structure, the nicotinic acid ring being fixed near the heme by the conserved Thr residue in the I-helix and the upward-shifted propionate side-chain of the heme. A proton channel near the NADH channel is formed upon the dinucleotide binding, which should direct continuous transfer of the hydride and proton. A salt-bridge network (Glu71-Arg64-Asp88) was shown to be crucial for a high catalytic turnover.  相似文献   

19.
The mechanism of the cytochrome P450 2B4 modification by hydrogen peroxide (H2O2) formed as a result of partial coupling of NADPH-dependent monooxygenase reactions has been studied in the monooxygenase system reconstituted from the highly purified microsomal proteins: cytochrome P450 2B4 (P450) and NADPH-cytochrome P450 reductase in the presence of detergent Emulgen 913. It was found, that H2O2-mediated P450 self-inactivation during benzphetamine oxidation is accompanied by heme degradation and apoenzyme modification. The P450 heme modification involves the heme release from the enzyme under the action of H2O2 formed within P450s active center via the peroxycomplex decay. Additionally, the heme lost is destroyed by H2O2 localized outside of enzyme's active center. The modification of P450 apoenzyme includes protein aggregation that may be due to the change in the physico-chemical properties of the inactivated enzyme. The modified P450 changes the surface charge that is confirmed by the increasing retention time on the DEAE column. Oxidation of amino acid residues (at least cysteine) may lead to the alteration into the protein hydrophobicity. The appearance of the additional ionic and hydrophobic attractions may lead to the increase of the protein aggregation. Hydrogen peroxide can initiate formation of crosslinked P450 dimers, trimers, and even polymers, but the main role in this process plays nonspecific radical reactions. Evidence for the involvement of hydroxyl radical into the P450 crosslinking is carbonyl groups formation.  相似文献   

20.
In flavocytochrome P450 BM3 there are several active site residues that are highly conserved throughout the P450 superfamily. Of these, a phenylalanine (Phe393) has been shown to modulate heme reduction potential through interactions with the implicitly conserved heme-ligand cysteine. In addition, a distal threonine (Thr268) has been implicated in a variety of roles including proton donation, oxygen activation and substrate recognition. Substrate binding in P450 BM3 causes a shift in the spin state from low- to high-spin. This change in spin-state is accompanied by a positive shift in the reduction potential (DeltaE(m) [WT+arachidonate (120 microM)]=+138 mV). Substitution of Thr268 by an alanine or asparagine residue causes a significant decrease in the ability of the enzyme to generate the high-spin complex via substrate binding and consequently leads to a decrease in the substrate-induced potential shift (DeltaE(m) [T268A+arachidonate (120 microM)]=+73 mV, DeltaE(m) [T268N+arachidonate (120 microM)]=+9 mV). Rate constants for the first electron transfer and for oxy-ferrous decay were measured by pre-steady-state stopped-flow kinetics and found to be almost entirely dependant on the heme reduction potential. More positive reduction potentials lead to enhanced rate constants for heme reduction and more stable oxy-ferrous species. In addition, substitutions of the threonine lead to an increase in the production of hydrogen peroxide in preference to hydroxylated product. These results suggest an important role for this active site threonine in substrate recognition and in maintaining an efficiently functioning enzyme. However, the dependence of the rate constants for oxy-ferrous decay on reduction potential raises some questions as to the importance of Thr268 in iron-oxo stabilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号