首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen VI assembly is unique within the collagen superfamily in that the alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains associate intracellularly to form triple helical monomers, and then dimers and tetramers, which are secreted from the cell. Secreted tetramers associate end-to-end to form the distinctive extracellular microfibrils that are found in virtually all connective tissues. Although the precise protein interactions involved in this process are unknown, the N-terminal globular regions, which are composed of multiple copies of von Willebrand factor type A-like domains, are likely to play a critical role in microfibril formation, because they are exposed at both ends of the tetramers. To explore the role of these subdomains in collagen VI intracellular and extracellular assembly, alpha 3(VI) cDNA expression constructs with sequential N-terminal deletions were stably transfected into SaOS-2 cells, producing cell lines that express alpha 3(VI) chains with N-terminal globular domains containing modules N9-N1, N6-N1, N5-N1, N4-N1, N3-N1, or N1, as well as the complete triple helix and C-terminal globular domain (C1-C5). All of these transfected alpha 3(VI) chains were able to associate with endogenous alpha 1(VI) and alpha 2(VI) to form collagen VI monomers, dimers, and tetramers, which were secreted. Importantly, cells that expressed alpha 3(VI) chains containing the N5 subdomain, alpha 3(VI) N9-C5, N6-C5, and N5-C5, formed microfibrils and deposited a collagen VI matrix. In contrast, cells that expressed the shorter alpha 3(VI) chains, N4-C5, N3-C5, and N1-C5, were severely compromised in their ability to form end-to-end tetramer assemblies and failed to deposit a collagen VI matrix. These data demonstrate that the alpha 3(VI) N5 module is critical for microfibril formation, thus identifying a functional role for a specific type A subdomain in collagen VI assembly.  相似文献   

2.
We recently reported the isolation and sequencing of human cDNA clones corresponding to the alpha 3 chain of type VI collagen (Chu, M.-L., Zhang, R.-Z., Pan, T.-c., Stokes, D., Conway, D., Kuo, H.-J., Glanville, R., Mayer, U., Mann, K., Deutzmann, R., and Timpl, R. (1990) EMBO J. 9, 385-393). The study indicates that the amino-terminal globular domain of the alpha 3(VI) chain consists of nine repetitive subdomains of approximately 200 amino acid residues (N1-N9) and the gene appeared to undergo alternative splicing since some clones lacked regions encoding the N9 and part of the N3 subdomains. In the present study, we report the exon structure for the region encoding the amino-terminal globular domain of the human alpha 3(VI) chain. The nine repetitive subdomains are encoded by 10 exons spanning 26 kilobase pairs of genomic DNA. Eight of the repetitive subdomains (N2-N9) were found to be encoded by separate exons of approximately 600 base pairs each. The only exception is the N1 subdomain which is encoded by two exons of 417 and 146 base pairs. Characterization of the exon/intron structure showed that the cDNA variants were the result of splicing out of exon 9 (encoding the N9 subdomain) and part of exon 3 (encoding the N3 subdomain). Nuclease S1 analysis and the polymerase chain reaction demonstrated that exon 7 (N7 subdomain) was also subject to alternative splicing in normal skin fibroblasts. Examination of these splicing events by nuclease S1 analysis in normal fibroblasts, three different human tumor cell lines, and several human tissues showed that splicing out of exon 9 is much more efficient in normal as compared to tumor cells.  相似文献   

3.
U Specks  U Mayer  R Nischt  T Spissinger  K Mann  R Timpl  J Engel    M L Chu 《The EMBO journal》1992,11(12):4281-4290
A large portion of the N-terminal globule of human collagen VI was prepared from the culture medium of stably transfected human embryonic kidney cell clones. The recombinant product corresponds to sequence positions 1-1586 of the alpha 3 (VI) chain that consists of eight homologous approximately 200 residue motifs (N9 to N2) being similar to the A domain motif of von Willebrand factor. By ultracentrifugation fragment N9-N2 showed a molecular mass of 180 kDa and an asymmetric shape. Elongated structures that consist of eight small globes (diameter approximately 5 nm) were demonstrated by electron microscopy. The data indicate that each A domain motif represents a separate folding unit which are connected to each other by short protease-sensitive peptide segments. Circular dichroism studies demonstrated about 38% alpha helix, 14% beta sheets and 17% beta turns. Fragment N9-N2 showed binding to heparin which could be abolished by moderate salt concentrations. Heparin binding was assigned to domains N9, N6 and N3 which were obtained after partial proteolysis. Domains N7, N5 and N4 lacked affinity for heparin. In addition, N9-N2 showed strong binding to hyaluronan that required exposure to 6 M urea for full dissociation. Ligand binding studies indicated some affinity of N9-N2 for the triple helical region of collagen VI suggesting a role of the N-terminal globule in the self-assembly of microfibrils. No or only little binding was, however, observed to fibril-forming collagens I and III, several basement membrane proteins and other extracellular proteins. Fragment N9-N2 was also an inactive substrate for cell adhesion.  相似文献   

4.
Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI)   总被引:1,自引:0,他引:1  
We report the identification of three new collagen VI genes at a single locus on human chromosome 3q22.1. The three new genes are COL6A4, COL6A5, and COL6A6 that encode the alpha4(VI), alpha5(VI), and alpha6(VI) chains. In humans, the COL6A4 gene has been disrupted by a chromosome break. Each of the three new collagen chains contains a 336-amino acid triple helix flanked by seven N-terminal von Willebrand factor A-like domains and two (alpha4 and alpha6 chains) or three (alpha5 chain) C-terminal von Willebrand factor A-like domains. In humans, mRNA expression of COL6A5 is restricted to a few tissues, including lung, testis, and colon. In contrast, the COL6A6 gene is expressed in a wide range of fetal and adult tissues, including lung, kidney, liver, spleen, thymus, heart, and skeletal muscle. Antibodies to the alpha6(VI) chain stained the extracellular matrix of human skeletal and cardiac muscle, lung, and the territorial matrix of articular cartilage. In cell transfection and immunoprecipitation experiments, mouse alpha4(VI)N6-C2 chain co-assembled with endogenous alpha1(VI) and alpha2(VI) chains to form trimeric collagen VI molecules that were secreted from the cell. In contrast, alpha5(VI)N5-C1 and alpha6(VI)N6-C2 chains did not assemble with alpha1(VI) and alpha2(VI) chains and accumulated intracellularly. We conclude that the alpha4(VI)N6-C2 chain contains all the elements necessary for trimerization with alpha1(VI) and alpha2(VI). In summary, the discovery of three additional collagen VI chains doubles the collagen VI family and adds a layer of complexity to collagen VI assembly and function in the extracellular matrix.  相似文献   

5.
Three novel collagen VI chains with high homology to the alpha3 chain   总被引:1,自引:0,他引:1  
Here we describe three novel collagen VI chains, alpha4, alpha5, and alpha6. The corresponding genes are arranged in tandem on mouse chromosome 9. The new chains structurally resemble the collagen VI alpha3 chain. Each chain consists of seven von Willebrand factor A domains followed by a collagenous domain, two C-terminal von Willebrand factor A domains, and a unique domain. In addition, the collagen VI alpha4 chain carries a Kunitz domain at the C terminus, whereas the collagen VI alpha5 chain contains an additional von Willebrand factor A domain and a unique domain. The size of the collagenous domains and the position of the structurally important cysteine residues within these domains are identical between the collagen VI alpha3, alpha4, alpha5, and alpha6 chains. In mouse, the new chains are found in or close to basement membranes. Collagen VI alpha1 chain-deficient mice lack expression of the new collagen VI chains implicating that the new chains may substitute for the alpha3 chain, probably forming alpha1alpha2alpha4, alpha1alpha2alpha5, or alpha1alpha2alpha6 heterotrimers. Due to a large scale pericentric inversion, the human COL6A4 gene on chromosome 3 was broken into two pieces and became a non-processed pseudogene. Recently COL6A5 was linked to atopic dermatitis and designated COL29A1. The identification of novel collagen VI chains carries implications for the etiology of atopic dermatitis as well as Bethlem myopathy and Ullrich congenital muscular dystrophy.  相似文献   

6.
Human collagen alpha 3(VI) chain mRNA (approximately 10 kb) was cloned and shown by sequence analysis to encode a 25 residue signal peptide, a large N-terminal globule (1804 residues), a central triple helical segment (336 residues) and a C-terminal globule (803 residues). Some of the sequence was confirmed by Edman degradation of peptides. The N-terminal globular segment consists of nine consecutive 200 residue repeats (N1 to N9) showing internal homology and also significant identity (17-25%) to the A domains of von Willebrand Factor and similar domains present in some other proteins. Deletions were found in the N3 and N9 domains of several cDNA clones suggesting variation of these structures by alternative splicing. The C-terminal globule starts immediately after the triple helical segment with two domains C1 (184 residues) and C2 (248 residues) being similar to the N domains. They are followed by a proline rich, repetitive segment C3 of 122 residues, with similarity to some salivary proteins, and domain C4 (89 residues), which is similar to the type III repeats present in fibronectin and tenascin. The most C-terminal domain C5 (70 residues) shows 40-50% identity to a variety of serine protease inhibitors of the Kunitz type. The whole sequence contains 29 cysteines which are mainly clustered in short segments connecting domains N1, C1, C2 and the triple helix, and in the inhibitor domain. Five putative Arg-Gly-Asp cell-binding sequences are exclusively localized in the triple helical segment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.  相似文献   

10.
11.
Ultrastructural alterations of collagen VI in cultured fibroblasts and reduced collagen VI immunostaining in the papillary dermis and endomysium were detected in a patient with a mild form of Ullrich congenital muscular dystrophy caused by a COL6A3 gene mutation. The patient had been previously demonstrated to express an alpha3(VI) chain shorter than normal due to skipping of the mutated exon. We show that collagen VI filaments are not organized in a normal network in the extracellular matrix secreted by patient's cultured fibroblasts. Moreover, we demonstrate that in this patient the alpha3(VI) chain is produced in lower amounts and it is almost exclusively represented by the shorter, alternatively spliced N6-C5 isoform. These results suggest that different alpha3(VI) chain isoforms, containing also domains of the N10-N7 region, are required for assembling a proper collagen VI network in the extracellular matrix.  相似文献   

12.
Laminin, a multifunctional glycoprotein of the basement membrane, consists of three different subunits, alpha, beta, and gamma chains. To date, five different alpha chains have been identified. N-terminal domain VI in the alpha1 chain has various biological activities. Here we screened biologically active sequences on domain VI of the laminin alpha2, alpha3, and alpha5 chains using a large number of overlapping peptides. HT-1080 human fibrosarcoma cell attachment to the peptides was evaluated using peptide-coated plastic plates and peptide-conjugated Sepharose beads. We identified four cell adhesive sequences from laminin alpha2 chain domain VI, two sequences from the alpha3 chain, and two sequences from the laminin alpha5 chain. Sequences homologous to A13 (RQVFQVAYIIIKA, alpha1 chain 121-133) on all the alpha chains (FQIAYVIVKA, alpha2 chain 130-139; GQLFHVAYILIKF, alpha3 chain 96-108; FHVAYVLIKA, alpha5 chain 74-83) showed strong cell attachment activity. A5-16 (LENGEIVVSLVNGR, alpha5 chain 147-160) showed the strongest cell attachment activity in the plate assay, and the homologous peptide in the alpha3 chain promoted similar strong cell attachment activity. A5-16 and its homologous peptide in the alpha2 chain promoted moderate cell attachment, while the homologous peptide to A5-16 in the alpha1 chain did not show activity. A2-7 (SPSIKNGVEYHYV, alpha2 chain 108-120) showed cell attachment activity only in the plate assay, but homologous sequences in the alpha1, alpha3, and alpha5 chains did not promote activity. A2-7 promoted endothelial cell sprouting from aortic rings in vitro and melanoma colonization to murine lungs in vivo. However, none of the homologous peptides of A2-7 promoted experimental pulmonary metastasis by B16-BL6 melanoma cells. These results indicate that there are chain-specific active sites in domain VI of the laminin alpha chains, some of which contain conserved activities.  相似文献   

13.
14.
15.
Characterization of the precursor form of type VI collagen   总被引:10,自引:0,他引:10  
Well characterized monospecific antisera against pepsin-extracted bovine type VI collagen were used to identify and characterize the intact form of type VI collagen. In immunoblotting experiments the antisera reacted with the pepsin-resistant fragments of the alpha 1(VI) and alpha 3(VI) chains, but not with the fragment of the alpha 2(VI) chain. Extracts obtained from uterus and aorta with 6 M guanidine HCl contained two immunoreactive polypeptides of Mr = 190,000 and 180,000 based on globular protein standards. Cleavage of extracts with pepsin generated the previously characterized pepsin-resistant fragments of alpha 1(VI) and alpha 3(VI), indicating that the higher molecular weight polypeptides represent the intact parent chains, alpha 1(VI) and alpha 3(VI). Digestion of extracts with bacterial collagenase released an Mr = 100,000 noncollagenous fragment from the alpha 1(VI) chain. Thus, intact type VI collagen in tissues contains a relatively short triple helical domain and at least one very large globular domain which is sensitive to pepsin but resistant to collagenase digestion. Immunoblotting revealed a polypeptide of Mr = 240,000, which we suggest represents the pro-alpha 1(VI) chain, in the culture medium of bovine fibroblasts. Bands intermediate in molecular weight between 240,000 and 190,000 were identified in cell layers. These findings establish type VI collagen as a protein with very large nontriple helical domains, a property that undoubtedly plays an important role in its function.  相似文献   

16.
17.
The amino terminal domain of collagen XI has a unique structure, which is believed to participate in the regulation of matrix assembly. Interestingly, several distinct isoforms of the amino terminal domain of alpha1(XI) and alpha2(XI) collagen chains exist as a result of alternative splicing. Here we report the analysis of the alternative splicing pattern of the mouse alpha1(XI) collagen gene (Col11a1). Like other vertebrate species, the mutually exclusive expression of exons 6A and 6B of Col11a1 results in the inclusion in the alpha1 chain of either an acidic peptide (pI 3.14) or a basic peptide (pI 11.66). Expression of these two exons was monitored in several tissues of the 16.5-day mouse embryo by in situ hybridization and immunohistochemistry, with exon-specific cDNA probes and peptide-specific antibodies, respectively. The results documented that isoforms containing the exon 6B-encoded peptide accumulate predominantly in the vertebrae, skeletal muscles and intestinal epithelium. By contrast, exon 6A products were found to be most abundant in the smooth muscle cells of the intestine, aorta and lung. The results using in situ hybridization confirmed those using immunohistochemistry. Albeit correlative, the evidence suggests distinct contributions of the two peptides to the differential assembly of tissue-specific matrices.  相似文献   

18.
19.
Synaptotagmin (Syt) constitutes a large family of putative membrane trafficking proteins that share a short extracellular domain, a single N-terminal transmembrane domain, and C-terminal tandem C2 domains. In this study, I identified and characterized a novel member of the Syt family (named Syt XV-a) in the mouse, the rat, and humans. Although Syt XV-a protein has a short hydrophobic region at the very end of the N terminus (i.e., lacks a putative extracellular domain), biochemical and cellular analyses have indicated that the short hydrophobic region (amino acids 5-22) is sufficient for producing type I membrane topology in cultured cells, the same as in other Syt family proteins. Unlike other Syt isoforms, however, the mouse and human Syt XV have an alternative splicing isoform that lacks the C-terminal portion of the C2B domain (named Syt XV-b). Since the expression of Syt XV-a/b mRNA was mainly found in non-neuronal tissues (e.g., lung and testis) and Syt XV-a C2 domains lack Ca(2+)-dependent phospholipid binding activity, Syt XV-a is classified as a non-neuronal, Ca(2+)-independent Syt.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号