首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Upon digestion of the complex formed from the 23-S ribosomal RNA and the 50-S ribosomal protein L24 of Escherichia coli, two fragments resistant to ribonuclease were recovered; these fragments contained RNA sections belonging to the 480 nucleotides at the 5' end of 23-S RNA. By determining the sequence of 70% of this latter region we were able to localise the sections which, in the presence of the protein, are resistant to ribonuclease. Our results suggest that the region encompassing the 480 nucleotides starting at the 9th nucleotide from the 5' end of 23-S RNA has a compact tertiary structure, which is stabilised by protein L24.  相似文献   

2.
An RNA fragment, constituting three subfragments of nucleotide sequences 1-11, 69-87 and 89-120, is the most ribonuclease-resistant part of the native 5S RNA of Escherichia coli, at 0 degrees C. A smaller fragment of nucleotide sequence 69-87 and 90-110 is ribonuclease-resistant at 25 degrees. Degradation of the L25-5S RNA complex with ribonuclease A or T2 yielded RNA fragments similar to those of the free 5S RNA at 0 degrees C and 25 degrees C; moreover L25 remained strongly bound to both RNA fragments and also produced some opening of the RNA structure in at least two positions. Protein L18 initially protected most of the 5S RNA against ribonuclease digestion, at 0 degrees C, but was then gradually released prior to the formation of the larger RNA fragment. It cannot be concluded, therefore, as it was earlier (Gray et al., 1973), that this RNA fragment contains the primary binding site of L18.  相似文献   

3.
The complete nucleotide sequence of the mRNA for the outer membrane lipoprotein from Escherichia coli has been determined. All the ribonuclease T1 and ribonuclease A fragments obtained from the mRNA were connected with DNA sequencing of restriction endonuclease fragments of the cloned lipoprotein gene. The mRNA consists of 322 nucleotides, and there are 38 and 50 nucleotides in the 5' and 3' end untranslated regions, respectively. The mRNA has several unique features: (a) Out of 50 possible codons for 15 amino acids in the prolipoprotein only 25 codons are used, and all of these appear to be read by the major isoaccepting species of tRNAs for individual amino acids. (b) In the first 64 nucleotides from the 5' end, there are no obvious secondary structures. On the other hand, between the 65th nucleotide and the 3' end, 85% of the nucleotides are involved in the formation of secondary structures, with nine stable stem-and-loop structures. (c) There are many repeating sequences including one repeat of 40 nucleotides. (d) There are a few other features which could be important for efficient translation of the mRNA.  相似文献   

4.
5.
6.
Copperative interactions among constituents of the 50S ribosomal subunit of Escherichia coli have been analyzed in order to elucidate its assembly and structural organization. Proteins L5 and L18 were shown to be necessary and sufficient to effect the association of the 5S and 23S RNAs into a quaternary complex that contains equimolar amounts of all four components. Measurement of diffusion constants by laser light scattering revealed that integration of the 5S RNA induced the 23S RNA to adopt a somewhat more open conformation. An investigation of relationships among proteins associated with the central and 3' portions of the 23S RNA demonstrated that attachment of L5, L10 + L11, and L28 depends upon the RNA-binding proteins L16, L2, and L1 + L3 + L6, respectively, and that L2 interacts with the central segment of the 23S RNA. These data, as well as the results of others, have been used to construct a scheme that depicts both direct and indirect associations of the 5S RNA, the 23S RNA, and over two-thirds of the subunit proteins. The 5' third of the 23S RNA apparently organizes the proteins required to nucleate essential reactions, whereas a region within 500 to 1500 bases of its 3' terminus is associated primarily with proteins involved in the major functional activities of the 50S ribosomal particle.  相似文献   

7.
To determine the region of 16S ribonucleic acid (RNA) at the interface between 30 and 50S ribosomes of Escherichia coli, 30 and 70S ribosomes were treated with T1 ribonuclease (RNase). The accessibility of 16S RNA in the 5' half of the molecule is the same in 30 and 70S ribosomes. The interaction with 50S ribosomes decreases the sensitivity to T1 RNase of an area in the middle of 16S RNA. A large area near the 3' end of 16S RNA is completely protected in 70S ribosomes. The RNA near the 3' end of the molecule and an area of RNA in the middle of the molecule appear to be at the interface between 30 and 50S ribosomes. One site in 16S RNA, 13 to 15 nucleotides from the 3' end, normally inaccessible to T1 RNase in 30S ribosomes, becomes accessible to T1 RNase in 70S ribosomes. This indicates a conformational change at the 3' end of 16S RNA when 30S ribosomes are associated with 50S ribosomes.  相似文献   

8.
9.
Protein L24, from the Escherichia coli ribosome, protects a large region of 23S RNA against ribonuclease digestion. This protected RNA consists of a series of non-contiguous subfragments encompassing about 480 nucleotides at the 5' -end of 23S RNA (1). The present work demonstrates that this RNA moiety remains intact, after removal of protein L24, indicating that the subfragments are maintained together by RNA-RNA interactions. Using a urea washing procedure, the weakly bound RNA subfragments were selectively removed leaving more strongly interacting subfragments that were identified, by gel electrophoresis and oligonucleotide fingerprinting, and shown to derive from widely separated sequence regions.  相似文献   

10.
When Escherichia coli 30-S ribosomal subunits are hydrolysed under mild conditions, two ribonucleoprotein fragments of unequal size are produced. Knowledge of the RNA sequences contained in these hydrolysis products was required for the experiments described in the preceding paper, and the RNA sub-fragments have therefore been examined by oligonucleotide analysis. Two well-defined small fragments of free RNA, produced concomitantly with the ribonucleoprotein fragments, were also analysed. The larger ribonucleoprotein fragment, containing predominantly proteins S4, S5, S8, S15, S16 (17) and S20, contains a complex mixture of RNA sub-fragments varying from about 100 to 800 nucleotides in length. All these fragments arose from the 5'-terminal 900 nucleotides of 16-S RNA, corresponding to the well-known 12-S fragment. No long-range interactions could be detected within this RNA region in these experiments. The RNA from the smaller ribonucleoprotein fragment (containing proteins S7, S9 S10, S14 and S19) has been described in detail previously, and consists of about 450 nucleotides near the 3' end of the 16-S RNA, but lacking the 3'-terminal 150 nucleotides. The two small free RNA fragments (above) partly account for these missing 150 nucleotides; both fragments arose from section A of the 16-S RNA, but section J (the 3'-terminal 50 nucleotides) was not found. This result suggests that the 3' region of 16-S RNA is not involved in stable interactions with protein.  相似文献   

11.
A fragment of ribosomal protein L18 was prepared by limited trypsin digestion of a specific complex of L18 and 5S RNA. It was characterised for sequence and the very basic N-terminal region of the protein was found to be absent. No smaller resistant fragments were produced. 5S RNA binding experiments indicated that the basic N-terminal region, from amino acid residues 1 to 17, was not important for the L18-5S RNA association. Under milder trypsin digestion conditions three resistant fragments were produced from the free protein. The largest corresponded to that isolated from the complex. The smaller ones were trimmed slightly further at both N- and C-terminal ends. These smaller fragments did not reassociate with 5S RNA. It was concluded on the basis of the trypsin protection observations and the 5S RNA binding results that the region extending from residues 18 to 117 approximates to the minimum amount of protein required for a specific and stable protein-RNA interaction. The accessibility of the very basic N-terminal region of L18, in the L18-5S RNA complex, suggests that it may be involved, in some way, in the interaction of 5S RNA with 23S RNA.  相似文献   

12.
13.
K+-depleted 60S ribosomal subunits from rat liver were submitted to a mild treatment with ribonuclease T1. Ribonucleoprotein fragments could be separated on sucrose gradients only when the digested subunits were partially deproteinized with a high KCl concentration (0.6 M) which removed seven proteins more or less completely and 5S RNA. The RNA and protein content of each fragment has been characterized. The largest ribonucleoprotein enclosed two RNA fragments of about 950,000 and 750,000 daltons and all the salt-resistant proteins except L5. The smallest one enclosed protein L5 (with L11, L17 and L26 in small amounts) and a 67,000 RNA piece. The subsequent hydrolysis of the large ribonucleoprotein produced several other ribonucleoproteins. One of them has been fully characterized: it enclosed a 250,000 RNA fragment and protein L12 (with L11, L25 and L30 in smaller amounts).  相似文献   

14.
Intra-RNA cross-links were introduced into E. coli 50S ribosomal subunits by mild ultraviolet irradiation. The subunits were partially digested with cobra venom nuclease, and the cross-linked RNA complexes were isolated by two-dimensional electrophoresis. Many of the complexes were submitted to a second partial digestion procedure. Oligonucleotide analysis of the RNA fragments obtained in this manner enabled cross-links between the following ribonuclease T1 oligonucleotides in the 23S RNA to be established: positions 292-296 and 339-350; 601-604 and 652-656; 1018-1022 and 1140-1149; 1433-1435 and 1556-1560; 1836-1839 and 1898-1903; 2832-2834 (tentative) and 2878-2885; 2849-2852 and 2865-2867 (tentative); 739-748 and 2609-2618; 571-577 and 2030-2032; 1777-1792 (tentative) and 2584-2588. The first seven of these cross-links lie within the secondary structure of the 23S RNA, whereas the last three are tertiary structural cross-links. The degree of precision of the individual determinations was variable, depending on the nucleotide sequence in the vicinity of the cross-link site concerned.  相似文献   

15.
16.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

17.
The ribonuclease alpha-sarcin exclusively cleaves the phosphodiester bond after G2661 in the 23S rRNA within 50S subunits, thus inactivating the ribosomes. The resulting alpha-fragment is 243 nucleotides long and contains the 3'-end of the 23S rRNA. The specificity is changed dramatically if isolated 23S rRNA is used as substrate. We have shown previously that 23S rRNA is digested completely except for two fragments, one of which is identical to the alpha-fragment. Here we show that the other fragment comprises the 5'-end of 23S rRNA and contains 385 nucleotides. A similar fragment was obtained when isolated 23S rRNA was digested with RNase A (specific for pyrimidines in single strands). It appears that the 5'-domain (equivalent to 5.8S rRNA of eukaryotic ribosomes) as well as the 3'-domain (equivalent to 4.5S rRNA of chloroplast ribosomes) have a compact and defined tertiary structure in isolated 23S rRNA in contrast to the rRNA region in between. Thus, alpha-sarcin is a convenient tool for detecting compact domains in isolated RNA.  相似文献   

18.
Foot and mouth disease virus RNA has been treated with RNase H in the presence of oligo (dG) specifically to digest the poly(C) tract which lies near the 5' end of the molecule (10). The short (S) fragment containing the 5' end of the RNA was separated from the remainder of the RNA (L fragment) by gel electrophoresis. RNA ligase mediated labelling of the 3' end of S fragment showed that the RNase H digestion gave rise to molecules that differed only in the number of cytidylic acid residues remaining at their 3' ends and did not leave the unique 3' end necessary for fast sequence analysis. As the 5' end of S fragment prepared form virus RNA is blocked by VPg, S fragment was prepared from virus specific messenger RNA which does not contain this protein. This RNA was labelled at the 5' end using polynucleotide kinase and the sequence of 70 nucleotides at the 5' end determined by partial enzyme digestion sequencing on polyacrylamide gels. Some of this sequence was confirmed from an analysis of the oligonucleotides derived by RNase T1 digestion of S fragment. The sequence obtained indicates that there is a stable hairpin loop at the 5' terminus of the RNA before an initiation codon 33 nucleotides from the 5' end. In addition, the RNase T1 analysis suggests that there are short repeated sequences in S fragment and that an eleven nucleotide inverted complementary repeat of a sequence near the 3' end of the RNA is present at the junction of S fragment and the poly(C) tract.  相似文献   

19.
Escherichia coli strain 15--28 is a mutant which during exponential growth contains large amounts of a '47S' ribonucleoprotein precursor to 50S ribosomes. The '47S particles' are more sensitive to ribonuclease than are 50S ribosomes. The 23 S RNA of 47S particles may be slightly undermethylated, but cannot be distinguished from the 23S RNA of 50S ribosomes by sedimentation or electrophoresis. Isolated particles have 10--15% less protein than do 50S ribosomes; proteins L16, L28 and L33 are absent. Comparison with precursor particles studied by other workers in wild-type strains of E. coli suggests that the assembly of 50S ribosomes in strain 15--28 is atypical.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号