首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The outer membrane protein, OmpC, from Escherichia coli was used to display metal-binding poly-histidine peptides on the surface of this bacterium. SDS-PAGE analysis of outer membrane protein preparations confirmed the expression of the metal-binding epitopes inserted in position 162 of the mature OmpC protein. Display of these epitopes was confirmed by epifluorescence microscopy of cells bound to Ni2+-NTA-agarose beads and metal adsorption experiments. The cells harboring one or two copies of the metal binding epitope were able to adsorb 3 to 6 times more Zn2+ (13.8 mol g–1 cell), Fe3+ (35.3 mol g–1 cell), and Ni2+ (9.9 mol g–1 cell) metallic ions than control cells expressing the wild-type OmpC.  相似文献   

2.
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h−1 and by 3 orders of magnitude at a lower dilution rate (0.327 h−1). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h−1 and persisted until the end of the experiment (~200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.  相似文献   

3.
OmpF and OmpC porin channels are responsible for the passage of small hydrophilic solutes across the outer membrane of Escherichia coli. Although these channels are two of the most extensively studied porin channels, what had yet remained elusive was the reason why OmpC shows markedly lower permeability than OmpF, despite having little difference in its channel size. The OmpC channel, however, is known to contain a larger number of ionizable residues than the OmpF channel. In this study, we examined the channel property of OmpF and OmpC using the intact cell of E. coli, and we found that the permeability of several β-lactams and lactose through OmpC became increased to the level comparable with OmpF with up to 0.3 m salt that may increase the Debye-Hückel shielding or with 2% ethanol or 0.3 m urea that may perturb the short range ordering of water molecules. Replacing 10 pore-lining residues that show different ionization behavior between OmpC and OmpF led to substantial conversion of channel property with respect to their permeability and response to external salt concentration. We thus propose that the overall configuration of ionizable residues in the channel that may orient water molecules and the electrostatic profile of the channel play a decisive role in defining the channel property of the OmpC porin rather than its channel size.  相似文献   

4.
To further develop genetic techniques for the enteropathogen Brachyspira hyodysenteriae, the gyrB gene of this spirochete was isolated from a λZAPII library of strain B204 genomic DNA and sequenced. The putative protein encoded by this gene exhibited up to 55% amino acid sequence identity with GyrB proteins of various bacterial species, including other spirochetes. B. hyodysenteriae coumermycin A1-resistant (Cnr) mutant strains, both spontaneous and UV induced, were isolated by plating B204 cells onto Trypticase soy blood agar plates containing 0.5 μg of coumermycin A1/ml. The coumermycin A1 MICs were 25 to 100 μg/ml for the resistant strains and 0.1 to 0.25 μg/ml for strain B204. Four Cnr strains had single nucleotide changes in their gyrB genes, corresponding to GyrB amino acid changes of Gly78 to Ser (two strains), Gly78 to Cys, and Thr166 to Ala. When Cnr strain 435A (Gly78 to Ser) and Cmr Kmr strain SH (ΔflaA1::cat Δnox::kan) were cultured together in brain heart infusion broth containing 10% (vol/vol) heat-treated (56°C, 30 min) calf serum, cells resistant to chloramphenicol, coumermycin A1, and kanamycin could be isolated from the cocultures after overnight incubation, but such cells could not be isolated from monocultures of either strain. Seven Cnr Kmr Cmr strains were tested and were determined to have resistance genotypes of both strain 435A and strain SH. Cnr Kmr Cmr cells could not be isolated when antiserum to the bacteriophage-like agent VSH-1 was added to cocultures, and the numbers of resistant cells increased fivefold when mitomycin C, an inducer of VSH-1 production, was added. These results indicate that coumermycin resistance associated with a gyrB mutation is a useful selection marker for monitoring gene exchange between B. hyodysenteriae cells. Gene transfer readily occurs between B. hyodysenteriae cells in broth culture, a finding with practical importance. VSH-1 is the likely mechanism for gene transfer.  相似文献   

5.
Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists.  相似文献   

6.
There are two distinct components of the system which limits the rate at which intact cells of S. cerevisiae C hydrolyze external β-glucosides; one component requires metabolic energy and the other is stereospecific for β-glucosides. The stereospecific component is localized at the cell membrane, as shown by its sensitivity to heavy metal inhibitors which did not penetrate the cell under the conditions used. It was shown that cellobiose-grown cells were able to remove cellobiose from the medium in which they were incubated, and that the cellobiose uptake system was identical to that which limits the patent β-glucosidase activity. In order to test the hypothesis that the system in question was a transport system, for β-glucosides the ability of cellobiose-grown cells to take up 14C-labeled methyl-β-glucoside (MBG) was studied. The induced cells were able to take up MBG-14C and the label could be partially chased out by cold MBG and cellobiose; glucose-grown cells could not incorporate label. However, induced cells could not take up label when incubated with 14C-MBG, thus excluding the hypothesis of transport of intact β-glucosides. It was concluded that the stereospecific membrane component was actually a β-glucosidase, coupled to an energy-dependent transport system for the glucose moiety; the function of the latter was rate-limiting in the over-all activity of the entire system.  相似文献   

7.
T cells bearing γδ antigen receptors have been investigated as potential treatments for several diseases, including malignant tumours. However, the clinical application of γδT cells has been hampered by their relatively low abundance in vivo and the technical difficulty of inducing their differentiation from hematopoietic stem cells (HSCs) in vitro. Here, we describe a novel method for generating mouse γδT cells by co‐culturing HSC‐enriched bone marrow cells (HSC‐eBMCs) with induced thymic epithelial cells (iTECs) derived from induced pluripotent stem cells (iPSCs). We used BMCs from CD45.1 congenic C57BL/6 mice to distinguish them from iPSCs, which expressed CD45.2. We showed that HSC‐eBMCs and iTECs cultured with IL‐2 + IL‐7 for up to 21 days induced CD45.1+ γδT cells that expressed a broad repertoire of Vγ and Vδ T‐cell receptors. Notably, the induced lymphocytes contained few or no αβT cells, NK1.1+ natural killer cells, or B220+ B cells. Adoptive transfer of the induced γδT cells to leukemia‐bearing mice significantly reduced tumour growth and prolonged mouse survival with no obvious side effects, such as tumorigenesis and autoimmune diseases. This new method suggests that it could also be used to produce human γδT cells for clinical applications.  相似文献   

8.
The metabolism of phosphatidylinositol-4,5-bisphosphate (PIP2) changed during the culture period of the thermoacidophilic red alga Galdieria sulphuraria. Seven days after inoculation, the amount of PIP2 in the cells was 910 ± 100 pmol g−1 fresh weight; by 12 d, PIP2 levels increased to 1200 ± 150 pmol g−1 fresh weight. In vitro assays indicated that phosphatidylinositol monophosphate (PIP) kinase specific activity increased from 75 to 230 pmol min−1 mg−1 protein between d 7 and 12. When G. sulphuraria cells were osmostimulated, transient increases of up to 4-fold could be observed in inositol-1,4,5-trisphosphate (IP3) levels within 90 s, regardless of the age of the cells. In d-12 cells, the increase in IP3 was preceded by a transient increase of up to 5-fold in specific PIP kinase activity, whereas no such increase was detected after osmostimulation of d-7 cells. The increase in PIP kinase activity before IP3 signaling in d-12 cells indicates that there is an additional pathway for regulation of phosphoinositide metabolism after stimulation other than an initial activation of phospholipase C. Also, the rapid activation of PIP2 biosynthesis in cells with already-high PIP2 levels suggests that the PIP2 present was not available for signal transduction. By comparing the response of the cells at d 7 and 12, we have identified two potentially distinct pools of PIP2.  相似文献   

9.
In recent years, increasing numbers of human campylobacteriosis cases caused by contaminated water have been reported. As the culture-based detection of Campylobacter is time consuming and can yield false-negative results, the suitability of a quantitative real-time PCR method in combination with an ethidium monoazide pretreatment of samples (EMA-qPCR) for the rapid, quantitative detection of viable Campylobacter cells from water samples was investigated. EMA-qPCR has been shown to be a promising rapid method for the detection of viable Campylobacter spp. from food samples. Application of membrane filtration and centrifugation, two methods frequently used for the isolation of bacteria from water, revealed a mean loss of up to 1.08 log10 cells/ml from spiked samples. Both methods used alone lead to a loss of dead bacteria and accumulation of viable bacteria in the sample as shown by fluorescence microscopy. After filtration of samples, no significant differences could be detected in subsequent qPCR experiments with and without EMA pretreatment compared to culture-based enumeration. High correlations (R2 = 0.942 without EMA, R2 = 0.893 with EMA) were obtained. After centrifugation of samples, qPCR results overestimated Campylobacter counts, whereas results from both EMA-qPCR and the reference method were comparable. As up to 81.59% of nonviable cells were detected in pond water, EMA-qPCR failed to detect correct quantities of viable cells. However, analyses of spiked tap water samples revealed a high correlation (R2 = 0.863) between results from EMA-qPCR and the reference method. After membrane filtration, EMA-qPCR was successfully applied to Campylobacter field isolates, and results indicated an advantage over qPCR by analysing defined mixtures of viable and nonviable cells. In conclusion, EMA-qPCR is a suitable method to detect viable Campylobacter from water samples, but the isolation technique and the type/quality of the water sample impact the results.  相似文献   

10.
It has been shown that DNA demethylation plays a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism of this action is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid, also known as Aicda) is involved in DNA demethylation in several developmental processes, as well as cell fusion-mediated reprogramming. Based on these reports, we hypothesized that Aid may be involved in the DNA demethylation that occurs during the generation of iPS cells. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid−/−) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By introducing Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP-positive iPS cells could be generated from the fibroblasts and primary B cells of Aid−/− mice. Their induction efficiency was similar to that of wild-type (Aid+/+) iPS cells. The Aid−/− iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. A comprehensive DNA methylation analysis showed only a few differences between Aid+/+ and Aid−/− iPS cells. These data suggest that Aid does not have crucial functions in DNA demethylation during iPS cell generation.  相似文献   

11.
12.
Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. hiPS-RPE cells appeared morphologically similar to mpRPE cells. Notably, expression of certain visual cycle proteins was maintained during cell culture of hiPS-RPE cells, whereas expression of these same molecules rapidly decreased in mpRPE cells. Production of the visual chromophore, 11-cis-retinal, and retinosome formation also were documented in hiPS-RPE cells in vitro. When mpRPE cells with luciferase activity were transplanted into the subretinal space of mice, bioluminance intensity was preserved for >3 months. Additionally, transplantation of mpRPE into blind Lrat−/− and Rpe65−/− mice resulted in the recovery of visual function, including increased electrographic signaling and endogenous 11-cis-retinal production. Finally, when hiPS-RPE cells were transplanted into the subretinal space of Lrat−/− and Rpe65−/− mice, their vision improved as well. Moreover, histological analyses of these eyes displayed replacement of dysfunctional RPE cells by hiPS-RPE cells. Together, our results show that hiPS-RPE cells can exhibit a functional visual cycle in vitro and in vivo. These cells could provide potential treatment options for certain blinding retinal degenerative diseases.  相似文献   

13.
14.
In humans, invariant natural killer T (iNKT) cells represent a small but significant population of peripheral blood mononuclear cells (PBMCs) with a high degree of variability. In this study, pursuant to our goal of identifying an appropriate non-human primate model suitable for pre-clinical glycolipid testing, we evaluated the percentage and function of iNKT cells in the peripheral blood of pig-tailed macaques. First, using a human CD1d-tetramer loaded with α-GalCer (α-GalCer-CD1d-Tet), we found that α-GalCer-CD1d-Tet+ CD3+ iNKT cells make up 0.13% to 0.4% of pig-tailed macaque PBMCs, which are comparable to the percentage of iNKT cells found in human PBMCs. Second, we observed that a large proportion of Vα24+CD3+ cells are α-GalCer-CD1d-Tet+CD3+ iNKT cells, which primarily consist of either the CD4+ or CD8+ subpopulation. Third, we found that pig-tailed macaque iNKT cells produce IFN-γ in response to α-GalCer, as shown by ELISpot assay and intracellular cytokine staining (ICCS), as well as TNF-α, as shown by ICCS, indicating that these iNKT cells are fully functional. Interestingly, the majority of pig-tailed macaque iNKT cells that secrete IFN-γ are CD8+ iNKT cells. Based on these findings, we conclude that the pig-tailed macaques exhibit potential as a non-human animal model for the pre-clinical testing of iNKT-stimulating glycolipids.  相似文献   

15.
Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4 × 105 CFU cm−2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (≥92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.  相似文献   

16.
Toll-like receptor 2 (TLR2) was shown to be an important immune receptor involved in the recognition of schistosome antigens, especially soluble egg antigen (SEA). In mice models with Schistosoma japonicum acute infection, we observed enhanced T cell-mediated immune responses in TLR2 knock out (TLR2−/−) mice compared with B6 mice. In Schistosoma japonicum chronic infection models, programmed death ligand 1 (PD-L1) and programmed death ligand 2 (PD-L2) expression as well as TLR2 expression gradually increased in B6 mice, while only PD-L2 expression significantly decreased in TLR2−/− mice. Meanwhile, Programmed Death 1(PD-1) expression on CD4+T cells was down-regulated in TLR2−/− mice after a large number of egg appeared. We also found that stimulation with schistosome antigens, especially SEA, could up-regulate PD-L2 expression on BMDCs in a TLR2-dependent manner in vitro. Schistosome antigens primed-BMDCs with impaired expression of TLR2 or PD-L2 could induce CD4+T cells to produce low level of IL-10 or high level of IFN-γ. Our results indicated that TLR2 signaling can direct PD-L2 expression on DCs, which binds to PD-1 mainly on CD4+T cells, to help inhibit T cells response in Schistosoma japonicum infection.  相似文献   

17.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30°C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane.  相似文献   

18.
K+ and Cl contents of guard cells and of ordinary epidermal cells were determined in epidermal samples of Allium cepa L. by electron probe microanalysis; malate contents of the same samples were determined by enzymic oxidation. KCl was, in general, the major osmoticum in guard cells, irrespective of whether stomata had opened on leaves or in epidermal strips floating on solutions. The solute requirement varied between 50 and 110 femtomoles KCl per micrometer increase in aperture per pair of guard cells. Stomata did not open on solutions of K iminodiacetate, presumably because its anion could not be taken up. Stomata opened if KCl or KBr was provided. Taken together, the results indicate that the absence of starch from guard cells deprived them of the ability to produce malate in amounts of osmotic consequence and that the presence of absorbable Cl (or Br) was necessary for stomatal opening.  相似文献   

19.
20.
A 38-kDa major outer membrane protein (OMP) was isolated from the nitrogen-fixing enterobacterium Rahnella aquatilis CF3. This protein exists as a stable trimer in the presence of 2% sodium dodecyl sulfate at temperatures below 60°C. Single channel experiments showed that this major OMP of R. aquatilis CF3 is able to form pores in the planar lipid membrane. Two oligonucleotides encoding the N-terminal portion of the 38-kDa OMP and C-terminal portion of OmpC were used to amplify the 38-kDa gene by PCR. The deduced amino acid sequence showed a strong homology with Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, and Serratia marcescens OmpC sequences, except loops L6 and L7, which are postulated to be cell surface exposed. On the basis of the OmpF-PhoE three-dimensional structure, it seems likely that this 38-kDa organizes three 16-strand β-barrel subunits. The relationship between the structure and the double functionality of this protein as porin and as a root adhesin is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号