首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Polyphosphate synthesis in yeast   总被引:5,自引:0,他引:5  
Polyphosphate synthesis was studied in phosphate-starved cells of Saccharomyces cerevisiae and Kluyveromyces marxianus. Incubation of these yeasts for a short time with phosphate and either glucose or ethanol resulted in the formation of polyphosphate with a short chain length. With increasing incubation times, polyphosphates with longer chain lengths were formed. Polyphosphates were synthesized faster during incubation with glucose than with ethanol. Antimycin did not affect the glucose-induced polyphosphate synthesis in either yeast. Using ethanol as an energy source, antimycin A treatment blocked both polyphosphate synthesis and accumulation of orthophosphate in the yeast S. cerevisiae. However, in K. marxianus, polyphosphate synthesis and orthophosphate accumulation proceeded normally in antimycin-treated cells, suggesting that endogenous reserves were used as energy source. This was confirmed in experiments, conducted in the absence of an exogenous energy source.  相似文献   

2.
Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated.  相似文献   

3.
Inulase-secreting strain of Saccharomyces cerevisiae produces fructose   总被引:2,自引:0,他引:2  
The gene encoding inulase of the yeast Kluyveromyces marxianus (INU1Km) was cloned and expressed in the inulin-negative yeast Saccharomyces cerevisiae. Cells of S. cerevisiae transformed with the INU1Km gene have acquired extracellular inulase activity and were able to grow in the medium with inulin as a sole carbon source. The S. cerevisiae strain was constructed that is capable of heterologous expression of secreted K. marxianus inulase and is defective in fructose uptake due to null-mutations of the hexokinase structural genes HXK1 and HXK2. When grown in inulin-containing media, this strain is capable of accumulating at least 10% glucose-free fructose in the culture liquid.  相似文献   

4.
PCR/RFLP of the NTS2 (IGS2) of rDNA was applied to differentiate two closely related yeast species, Kluyveromyces lactis var. lactis (referred to as K. lactis) and K. marxianus. Using specific primers, the NTS2 region was amplified from DNA of both K. lactis and K. marxianus type and collection strains. AluI restriction of amplified fragments generated patterns characteristic for each species. The NTS2 region from K. lactis var. drosophilarum and related species K. aestuarii, K. africanus, K. dobzhanskii, and K. wickerhamii could also be amplified with the same primers, but AluI patterns generated were clearly different. PCR/RFLP of the NTS2 appears thus to be a convenient method for rapid identification of K. lactis and K. marxianus, frequently found in dairy products. This test was validated therefore on K. lactis and K. marxianus from natural habitats. We showed that all yeast strains collected from whey samples and scoring blue on X-gal glucose plates were either K. lactis or K. marxianus. For application purposes, we propose here an approach for quickly screening for K. lactis/marxianus and Saccharomyces cerevisiae in dairy products using X-gal coloured and lysine growth media.  相似文献   

5.
The attributes of the yeast Kluyveromyces marxianus (rapid growth rate at high temperature, utilization of a wide range of inexpensive carbon sources) make it a promising industrial host for the synthesis of protein and non-protein products. However, no stable multicopy plasmids are currently available for long-term culture of K. marxianus. To allow the stable genetic/metabolic engineering of K. marxianus, a method for integrating precise numbers of the same or different genes was developed for this yeast. A K. marxianus URA3 deletion mutant was constructed and the URA3 blaster (UB) reusable selection cassette from Saccharomyces cerevisiae was used to select sequential, untargeted chromosomal insertions of the Bacillus megaterium lactate dehydrogenase (LDH) gene. Following excision of the UB cassette from the chromosomes, the integrating vector was retransformed into the strain and a second copy of LDH was inserted, demonstrating the success of this method for sequential gene integrations in K. marxianus. LDH activity and lactic acid concentration increased with each gene insertion, further illustrating the success of this method.  相似文献   

6.
Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40?°C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200?g?L(-1)) at 40?°C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2?g?L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7?%, respectively. In the range of 30 to 40?°C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.  相似文献   

7.
Two bacterial isolates from Great Bay Estuary, New Hampshire, in co-culture carried out anaerobic dissimilation of citric acid with Fe(III) as the terminal electron acceptor. Neither isolate oxidized citrate with Fe(III) anaerobically in axenic culture. The Fe(III) reducer, Shewanella alga strain BrY, did not grow anaerobically with citrate as an energy source. The citrate utilizer, Aeromonas veronii, did not reduce iron axenically with a variety of electron donors including citrate. The onset of iron reduction by the co-culture occurred after initiation of citrate dissimilation and just prior to initiation of growth by either organism (as measured by viable plate counts). Anaerobic culture growth rates and final cell densities of each bacterial strain were greater in co-culture than in axenic cultures. By 48 h of growth, the co-culture had consumed 27 mM citrate as compared with 12 mM dissimilated by the axenic culture of A. veronii. By 48 h the co-culture produced half as much formate (6 mM) and twice as much acetate (40 mM) as did A. veronii grown axenically (12 mM and 20 mM, respectively). Formate produced from citrate by A. veronii appeared to have supported growth and Fe(III) reduction by S. alga.Although not obligatory, nutrient coupling between these two organisms illustrates that fermentative (A. veronii-type) organisms can convert organic compounds such as citrate to those used as substrates by dissimilatory Fe(III) reducers, including S. alga. This synergism broadens the range of substrates available for iron reduction, stimulates the extent and rate of organic electron donor degradation (and that of iron reduction) and enhances the growth of each participant. Received: 11 December 1995 / Accepted: 19 June 1996  相似文献   

8.
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.  相似文献   

9.
10.
Four genes encoding alcohol dehydrogenase (Adh) isozymes in the thermotolerant yeast Kluyveromyces marxianus, a potent candidate for ethanol production at high temperatures, were investigated. Of these, KmADH3 and KmADH4 were cloned and sequenced, and their deduced amino acid sequences were compared with those of KmAdh1 and KmAdh2 and other Adhs of Kluyveromyces lactis and Saccharomyces cerevisiae. The four KmAdhs had high sequence similarity, though KmAdh3 and KmAdh4 possessed an amino-terminal extension as a mitochondrial targeting sequence, and appear to belong to the zinc-containing Adh family. These results and the results of Southern blot experiments suggest that there are at least four Adh isozymes in K. marxianus, two cytoplasmic enzymes and two mitochondrial enzymes. The expression profile revealed that KmADH genes are differently expressed depending on growth phase and carbon source, suggesting that these highly homologous Adhs play distinctive roles in cells.  相似文献   

11.
Iron is required for the growth of Saccharomyces cerevisiae. High concentrations of iron, however, are toxic, forcing this yeast to tightly regulate its concentration of intracellular free iron. We demonstrate that S. cerevisiae accumulates iron through the combined action of a plasma membrane ferrireductase and an Fe(II) transporter. This transporter is highly selective for Fe(II). Several other transition metals did not inhibit iron uptake when these metals were present at a concentration 100-fold higher than the Km (0.15 microM) for iron transport. Pt(II) inhibited ferrireductase activity but not the ability of cells to transport iron that was chemically reduced to Fe(II). Incubation of cells in a synthetic iron-limited media resulted in the induction of both ferrireductase and Fe(II) transporter activities. In complex media, Fe(II) transport activity was regulated in response to media iron concentration, while the activity of the ferrireductase was not. When stationary phase cells were inoculated into fresh media, ferrireductase activity increased independent of the iron content of the media; in contrast, transporter activity varied inversely with iron levels. These results demonstrate that the ferrireductase and Fe(II) transporter are separately regulated and that iron accumulation may be limited by changes in either activity.  相似文献   

12.
With a view to test how the branchial and intestinal tissues of fish, the two sites of metal acquisition, utilize the water-borne ferric [Fe(III)] iron and whether the accumulation of this form of iron influences cellular Na/K gradient in these tissues, the gills and intestines of climbing perch adapted to freshwater (FW) and acclimated to dilute seawater (20 ppt; SW) were analyzed for ouabain-sensitive Na+, K+-ATPase activity, Fe and electrolyte contents after loading a low (8.95 microM) or high dose (89.5 microM) of Fe(III) iron in the water. The SW gills showed higher levels of total Fe after treating with 8.95 microM of Fe(III) iron which was not seen in the FW gills. Na+, K+-ATPase activity, reflecting Na/K pump activity, showed an increase in the FW gills and not in the SW gills. Substantial increase in the branchial Na and K content was observed in the SW gills, but the FW gills failed to show such effects after Fe(III) loading. The total Fe content was declined in the FW intestine but not in the SW intestine. Water-borne Fe(III) iron decreased the activity of Na+, K+-ATPase in the SW intestine while not changing its activity in the FW intestine. The Na and K content in the FW intestine did not respond to Fe(III) iron exposure but showed a reduction in its Na levels in the SW intestine. The moisture content in the gills and intestines of both the FW and SW perch remained unaffected after Fe(III) loading. In FW fish, the plasma Na levels were decreased by a low dose of Fe(III) iron, though a high dose of Fe(III) iron was required in the SW fish for such an effect. Overall, the results for the first time provide evidence that gills act as a major site for Fe(III) iron absorption and accumulation during salinity acclimation which depends on a high cellular Na/K gradient.  相似文献   

13.
新疆地区酸马奶中酵母菌的鉴定及其生物多样性分析   总被引:2,自引:0,他引:2  
从新疆少数民族牧民家庭采集的28份传统工艺酿造酸马奶样品中分离出87株酵母菌,并对其进行了生理生化鉴定、分子生物学鉴定和生物多样性分析。生化试验结果表明,新疆地区酸马奶中的酵母菌为Saccharomyces unisporus(占总分离株的48.3%),Kluyveromyces marxianus(27.6%),Pichia membranaefaciens(15.0%)和Saccharomyces cerevisiae(9.2%)。选取其中的6株酵母菌和1株参考菌株,进行大亚基(26S)rDNA D1/D2区域(600bp左右)碱基序列分析,并通过GenBank进行同源序列搜索以确定各菌株的归属,进一步验证生理生化方法的正确性。从得到的结果中可以看出,S.unisporus和K.marxianus为新疆地区酸马奶中的优势菌。  相似文献   

14.
Based on the ability of phytosiderophores to chelate other heavy metals besides iron (Fe), phytosiderophores were suggested to prevent graminaceous plants from cadmium (Cd) toxicity. To assess interactions between Cd and phytosiderophore-mediated Fe acquisition, maize (Zea mays) plants were grown hydroponically under limiting Fe supply. Exposure to Cd decreased uptake rates of 59Fe(III)-phytosiderophores and enhanced the expression of the Fe-phytosiderophore transporter gene ZmYS1 in roots as well as the release of the phytosiderophore 2'-deoxymugineic acid (DMA) from roots under Fe deficiency. However, DMA hardly mobilized Cd from soil or from a Cd-loaded resin in comparison to the synthetic chelators diaminetriaminepentaacetic acid and HEDTA. While nano-electrospray-high resolution mass spectrometry revealed the formation of an intact Cd(II)-DMA complex in aqueous solutions, competition studies with Fe(III) and zinc(II) showed that the formed Cd(II)-DMA complex was weak. Unlike HEDTA, DMA did not protect yeast (Saccharomyces cerevisiae) cells from Cd toxicity but improved yeast growth in the presence of Cd when yeast cells expressed ZmYS1. When supplied with Fe-DMA as a Fe source, transgenic Arabidopsis (Arabidopsis thaliana) plants expressing a cauliflower mosaic virus 35S-ZmYS1 gene construct showed less growth depression than wild-type plants in response to Cd. These results indicate that inhibition of ZmYS1-mediated Fe-DMA transport by Cd is not related to Cd-DMA complex formation and that Cd-induced phytosiderophore release cannot protect maize plants from Cd toxicity. Instead, phytosiderophore-mediated Fe acquisition can improve Fe uptake in the presence of Cd and thereby provides an advantage under Cd stress relative to Fe acquisition via ferrous Fe.  相似文献   

15.
A thermotolerant yeast strain named Kluyveromyces marxianus IMB4 was used in a simultaneous saccharification and fermentation (SSF) process using Kanlow switchgrass as a feedstock. Switchgrass was pretreated using hydrothermolysis at 200 degrees C for 10 min. After pretreatment, insoluble solids were separated from the liquid prehydrolyzate by filtration and washed with deionized water to remove soluble sugars and inhibitors. Insoluble solids were then hydrolyzed using a commercial cellulase preparation and the released glucose was fermented to ethanol by K. marxianus IMB4 in an SSF process. SSF temperature was 37, 41, or 45 degrees C and pH was 4.8 or 5.5. SSF was conducted for 7 days. Results were compared with a control of Saccharomyces cerevisiae D(5)A at 37 degrees C and pH 4.8. Fermentation by IMB4 at 45 and 41 degrees C ceased after 3 and 4 days, respectively, when a pH 4.8 citrate buffer was used. Fermentation continued for all 7 days using IMB4 at 37 degrees C and the control. When pH 5.5 citrate buffer was used, fermentation ceased after 96 h using IMB4 at 45 degrees C, and ethanol yield was greater than when pH 4.8 citrate buffer was used (78% theoretical). Ethanol yield using IMB4 at 45 degrees C, pH 5.5 was greater than the control after 48, 72, and 96 h (P < 0.05).  相似文献   

16.
Many facultatively fermentative yeast species exhibit a "Kluyver effect": even under oxygen-limited growth conditions, certain disaccharides that support aerobic, respiratory growth are not fermented, even though the component monosaccharides are good fermentation substrates. This article investigates the applicability of this phenomenon for high-cell-density cultivation of yeasts. In glucose-grown batch cultures of Candida utilis CBS 621, the onset of oxygen limitation led to alcoholic fermentation and, consequently, a decrease of the biomass yield on sugar. In maltose-grown cultures, alcoholic fermentation did not occur and oxygen-limited growth resulted in high biomass concentrations (90 g dry weight L(-1) from 200 g L(-1) maltose monohydrate in a simple batch fermentation). It was subsequently investigated whether this principle could also be applied to Kluyveromyces species exhibiting a Kluyver effect for lactose. In oxygen-limited, glucose-grown chemostat cultures of K. wickerhamii CBS 2745, high ethanol concentrations and low biomass yields were observed. Conversely, ethanol was absent and biomass yields on sugar were high in oxygen-limited chemostat cultures grown on lactose. Batch cultures of K. wickerhamii grown on lactose exhibited the same growth characteristics as the maltose-grown C. utilis cultures: absence of ethanol formation and high biomass yields. Within the species K. marxianus, the occurrence of a Kluyver effect for lactose is known to be strain dependent. Thus, K. marxianus CBS 7894 could be grown to high biomass densities in lactose-grown batch cultures, whereas strain CBS 5795 produced ethanol after the onset of oxygen limitation and, consequently, yielded low amounts of biomass. Because the use of yeast strains exhibiting a Kluyver effect obviates the need for controlled substrate-feeding strategies to avoid oxygen limitation, such strains should be excellently suited for the production of biomass and growth-related products from low-cost disaccharide-containing feedstocks. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
Cell wall inulinase (EC 3.2.1.7) was purified from Kluyveromyces marxianus var. marxianus (formerly K. fragilis) and its N-terminal 33-amino acid sequence was established. PCR amplification of cDNA with 2 sets of degenerate primers yielded a genomic probe which was then used to screen a genomic library established in the YEp351 yeast shuttle vector. One of the selected recombinant plasmids allowed an invertase-negative Saccharomyces cerevisiae mutant to grow on inulin. It was shown to contain an inulinase gene (INU 1) encoding a 555-amino acid precursor protein with a typical N-terminal signal peptide. The sequence of inulinase displays a high similarity (67%) to S. cerevisiae invertase, suggesting a common evolutionary origin for yeast beta-fructosidases with different substrate preferences.  相似文献   

18.
Aft1p is a major iron regulator in budding yeast Saccharomyces cerevisiae. It indirectly senses cytosolic Fe status and responds by activating or repressing iron regulon genes. Aft1p within the Aft1-1(up) strain has a single amino acid mutation which causes it to constitutively activate iron regulon genes regardless of cellular Fe status. This leads to elevated Fe uptake under both low and high Fe growth conditions. Ferredoxin Yah1p is involved in Fe/S cluster assembly, and Aft1p-targeted iron regulon genes are also upregulated in Yah1p-depleted cells. In this study Mo?ssbauer, EPR, and UV-vis spectroscopies were used to characterize the Fe distribution in Aft1-1(up) and Yah1p-depleted cells. Aft1-1(up) cells grown in low Fe medium contained more Fe than did WT cells. A basal level of Fe in both WT and Aft1-1(up) cells was located in mitochondria, primarily in the form of Fe/S clusters and heme centers. The additional Fe in Aft1-1(up) cells was present as mononuclear HS Fe(III) species. These species are in a nonmitochondrial location, assumed here to be vacuolar. Aft1-1(up) cells grown in high Fe medium contained far more Fe than found in WT cells. The extra Fe was present as HS Fe(III) ions, probably stored in vacuoles, and as Fe(III) phosphate nanoparticles, located in mitochondria. Yah1p-deficent cells also accumulated nanoparticles in their mitochondria, but they did not contain HS Fe(III) species. Results are interpreted by a proposed model involving three homeostatic regulatory systems, including the Aft1 system, a vacuolar iron regulatory system, and a mitochondrial Fe regulatory system.  相似文献   

19.
Two soybean varieties that differentially absorb and translocate iron were used to compare root-sap citrate with stem-exudate citrate as they are involved in the uptake of Fe and Ca. The status of Fe and PO4 in the prenutrient solution determined the citrate concentration in the root sap and the citrate translocated in the stem exudate. There was a parallel between the iron and the citrate translocated in the stem exudate, but this relationship did not appear to exist for the citrate and Fe concentrations in the root sap. Iron stress (deficiency) promoted the accumulation of citrate in the root-sap, but there was not a concomitant increase of citrate in the stem exudate. In iron-deficient soybeans, phosphate stress also promoted the accumulation of citrate in the root sap, and here, stem-exudate citrate and root-sap citrate more nearly followed the same trends. The citrate pool in the root appears to result from a deficiency of iron and may not be directly involved in the absorption and translocation of iron from the growth medium. Increasing amounts of phosphate in the prenutrient decreased both the citrate and Fe in the root sap and stem exudate. The factors controlling the uptake of Fe are rather specific and are not related to the uptake of radioactive Ca 45 in soybeans regardless of soybean variety, degree of iron stress, or citrate concentration in the root.  相似文献   

20.
In this report we study the effect of Fe(III) on lipid peroxidation induced by Fe(II)citrate in mitochondrial membranes, as assessed by the production of thiobarbituric acid-reactive substances and antimycin A-insensitive oxygen uptake. The presence of Fe(III) stimulates initiation of lipid peroxidation when low citrate:Fe(II) ratios are used ( 4:1). For a citrate:total iron ratio of 1:1 the maximal stimulation of lipid peroxidation by Fe(III) was observed when the Fe(II):Fe(III) ratio was in the range of 1:1 to 1:2. The lag phase that accompanies oxygen uptake was greatly diminished by increasing concentrations of Fe(III) when the citrate:total iron ratio was 1:1, but not when this ratio was higher. It is concluded that the increase of lipid peroxidation by Fe(III) is observed only when low citrate:Fe(II) ratios were used. Similar results were obtained using ATP as a ligand of iron. Monitoring the rate of spontaneous Fe(II) oxidation by measuring oxygen uptake in buffered medium, in the absence of mitochondria, Fe(III)-stimulated oxygen consumption was observed only when a low citrate:Fe(II) ratio was used. This result suggests that Fe(III) may facilitate the initiation and/or propagation of lipid peroxidation by increasing the rate of Fe(II)citrate-generated reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号