首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A promising attempt in the field of tumour therapy is the modulation of intracellular, proliferation-associated signalling pathways. The role of cyclic nucleotide phosphodiesterases (PDEs), key enzymes in cAMP/cGMP signal transduction, was investigated in two human CNS tumour cell lines as well as in the rat glioblastoma cell line C6 in comparison with rat cerebellar astrocytes with the emphasis on target evaluation. We found differential PDE expression patterns in human CNS tumour cell lines as well as in CNS cells of rat origin. In human glioblastoma cells, intracellular cAMP and Ca(2+) levels correlated well with the PDE expression pattern. There were, however, marked differences in PDE expression and Ca(2+) kinetics between the human glioblastoma cell lines. In contrast to human epithelial tumour cells, shown earlier by us to express significantly enhanced cAMP-specific PDE activity, this was not the case in rat glioblastoma cells compared with non-malignant rat astrocytes. Despite different levels of PDE1 and PDE4 expression and activity, cyclic nucleotide and Ca(2+) levels in non-malignant and malignant rat CNS cells were similar. These in vitro data do not support the concept of PDE1C representing a target exploitable for drug treatment of malignant CNS tumours.  相似文献   

2.
3.
4.
We attempted to identify and establish the role of cyclic nucleotide phosphodiesterase (PDE) isozymes in human basophils by using standard biochemical techniques as well as describing the effects of isozyme-selective and nonselective inhibitors of PDE. The nonselective PDE inhibitors, theophylline and 3-isobutyl-1-methylxanthine, inhibited anti-IgE-induced release of histamine and leukotriene C4 (LTC4) from basophils. This inhibition was accompanied by elevations in cAMP levels. Rolipram, an inhibitor of the low Km cAMP-specific PDE (PDE IV), inhibited the release of both histamine and LTC4 from activated basophils and increased cAMP levels in these cells. In contrast, mediator release from basophils was not inhibited by either siguazodan or SK&F 95654, inhibitors of the cGMP-inhibited PDE (PDE III) or zaprinast, an inhibitor of the cGMP-specific PDE (PDE V). SK&F 95654 failed to elevate basophil cAMP in these experiments whereas zaprinast induced significant increases in cAMP content. The inhibitory effect of rolipram on mediator release was potentiated by siguazodan or SK&F 95654, but not by zaprinast. SK&F 95654 also enhanced the ability of rolipram to increase cAMP content. Forskolin, a direct activator of adenylate cyclase, inhibited IgE-dependent release of mediators from basophils and increased cAMP levels in these cells. These effects were enhanced by rolipram, but not by SK&F 95654 or zaprinast. The cell permeant analog of cAMP, dibutyryl cAMP, inhibited mediator release from these cells, a property not shared by either dibutyryl-cGMP or sodium nitroprusside, an activator of soluble guanylate cyclase. The presence of both PDE III and PDE IV was confirmed by partially purifying and characterizing PDE activity in broken cell preparations. Overall, these data lend support to the hypothesis that cAMP inhibits mediator release from basophils and suggest that the major PDE isozyme responsible for regulating cyclic AMP content in these cells is PDE IV, with a minor contribution from PDE III. However, the finding that zaprinast caused increases in cAMP without inhibiting mediator release indicates that cAMP accumulation is not invariably linked to an inhibition of basophil activation.  相似文献   

5.
Phosphodiesterase 4 (PDE4) has been suggested to a critical factor in the pathogenesis of inflammation by metabolizing cAMP in human leukocytes, endothelium and epithelium. The present study aimed at evaluating the PDE4 activity and expression, the relationship between the inflammation and cAMP- activity in the lungs, and potential interventions of PDE inhibitors and antiinflammatory drugs in the reduction of lung inflammation and goblet cell hyperplasia in allergic rats. The total leukocyte number and eosinophil number in bronchoalveolar lavegar fluid and infiltration of inflammatory cells in the perivascular and peribronchial spaces, structure changes and goblet cell hyperplasia in the OVA-sensitized and challenged allergic rats. A significant correlation was observed between the increases in cAMP-PDE activity and inflammation in the lung. Those OVA-induced changes were prevented by pretreatment with PDE inhibitor in a dose-related patterns and with glucocorticosteriod. We found an increase in the proportion of PDE4 and PDE4 gene expression, while a decrease in the proportion of PDE3 in the lung of the allergic rats. Incubation with different PDE inhibitors down-regulated OVA-induced cAMP hydrolysis. Our data suggest that PDE4C may play an important role in the airway inflammation, remodeling and goblet cell hyperplasia after repeated challenge of sensitized rats.  相似文献   

6.
Four main phosphodiesterase (PDE) forms were resolved and partially purified from rat liver and Morris hepatoma 5123tc(h). The activities of the high Km cyclic nucleotide PDE (form II) in hepatoma were markedly reduced compared to liver, while the activities of the low Km cAMP PDE (form III) and low Km cyclic nucleotide PDE (form IV) in hepatoma were markedly higher than those of liver. The partially purified low Km cAMP PDE's (forms III and IV) from liver showed non-linear Lineweaver-Burk plots, whereas the same enzyme forms in hepatoma displayed linear kinetics. Activation of low Km cGMP PDE activity by calmodulin was found with form I in liver whereas in hepatoma form II was responsive to calmodulin.  相似文献   

7.
8.
AimsPhosphodiesterases (PDEs) are key enzymes controlling cAMP and cGMP levels and spatial distribution within cardiomyocytes. Despite the clinical importance of several classes of PDE inhibitor there has not been a complete characterization of the PDE profile within the human cardiomyocyte, and no attempt to assess which species might best be used to model this for drug evaluation in heart disease.Main methodsVentricular cardiomyocytes were isolated from failing human hearts of patients with various etiologies of disease, and from rat and guinea pig hearts. Expression of PDE isoforms was determined using RT-PCR. cAMP- and cGMP-PDE hydrolytic activity was determined by scintillation proximity assay, before and after treatment with PDE inhibitors for PDEs 1, 2, 3, 4, 5 and 7. Functional effects of cAMP PDEi were determined on the contraction of single human, rat and guinea pig cardiomyocytes.Key findingsThe presence and activity of PDE5 were confirmed in ventricular cardiomyocytes from failing and hypertrophied human heart, as well as PDE3, with ventricle-specific results for PDE4 and a surprisingly large contribution from PDE1 for hydrolysis of both cAMP and cGMP. The total PDE activity of human cardiomyocytes, and the profile of inhibition by PDE1, 3, 4, and 5 inhibitors, was modelled well in guinea pig but not rat cardiomyocytes.SignificanceOur results provide the first full characterisation of human cardiomyocyte PDE isoforms, and suggest that guinea pig myocytes provide a better model than rat for PDE levels and activity.  相似文献   

9.
Adipocyte lipolysis is dependent on an increase in the intracellular concentration of cAMP. Intracellular phosphodiesterases (PDEs) hydrolyze cAMP and limit stimulation of lipolysis. In the present study, the mRNA expression of PDE4 subtypes and the antilipolytic role of PDE4 in rat adipocytes were investigated. Fragments encoding PDE4A (233 bp), PDE4B (786 bp), PDE4C (539 bp), and PDE4D (262 bp) sequences were amplified by RT-PCR. The mRNA expression of PDE4 subtypes (A, B, C, D) determined by real-time quantitative PCR was 7, 18.7, 18.9, and 7.2% relative to PDE3B. Inhibition of PDE4 by rolipram increased basal lipolysis and reversed in part prostaglandin E2 antilipolysis. The combination of PDE3 and PDE4 inhibitors synergistically reversed both prostaglandin E2 and phenylisopropyl adenosine antilipolysis. Stimulation of adipocytes with prostaglandin E2 increased total PDE activity and PDE3 activity measured by hydrolysis of 3[H]cAMP by the particulate fraction of adipocytes. The present study confirmed that mRNAs for all four PDE4 subtypes were expressed in rat adipocytes, with PDE4B and PDE4C predominant. Moreover, PDE4 not only limits the rate of basal lipolysis but also contributes to prostaglandin E2 antilipolysis in rat adipocytes.  相似文献   

10.
Enzymatic digestion of the interstitial tissue of early juvenile and adult rat testes resulted in an enrichment of the Leydig cell population. The cells of the intertubular preparation from adult testes were separated by centrifugal elutriation, according to differences in sedimentation velocity, a counter-flow centrifugation technique leading to 70% Leydig cell purity. Using this approach, it was possible to demonstrate that Leydig cells from adult testes contain only low affinity isoenzymes of cyclic AMP phosphodiesterase (PDE; E.C.: 3.1.4.17), an intracellular regulator of cAMP. Starch gel electrophoresis showed that the isozyme of cAMP PDE of Leydig cells is masked in crude testis homogenates due to the relatively low level of these cells in the total population. In Leydig cells, there are two different electrophoretic forms expressed which resemble two of eleven different molecular forms of cAMP PDE demonstrated for comparison in 21 different organs of the adult rat.
An interstitial cell preparation from early juvenile testes, with a Leydig cell content of up to 20%, was also investigated electrophoretically with regard to molecular forms of cAMP PDE, the properties of which were characterized by kinetic analysis of cAMP hydrolysis. The results presented are discussed in relation to the onset of testosterone synthesis in Leydig cells of prepubertal rats leading to the initiation of male puberty.  相似文献   

11.
12.
Surfactant proteins (SPs) are important lipoprotein complex components, expressed in alveolar epithelial cells type II (AEC-II), and playing an essential role in maintenance of alveolar integrity and host defence. Because expressions of SPs are regulated by cyclic adenosine monophosphate (cAMP), we hypothesized that phosphodiesterase (PDE) inhibitors, influence SP expression and release. Analysis of PDE activity of our AEC-II preparations revealed that PDE4 is the major cAMP hydrolysing PDE in human adult AEC-II. Thus, freshly isolated human AEC-II were stimulated with two different concentrations of the PDE4 inhibitor roflumilast-N-oxide (3 nM and 1 μM) to investigate the effect on SP expression. SP mRNA levels disclosed a large inter-individual variation. Therefore, the experiments were grouped by the basal SP expression in low and high expressing donors. AEC-II stimulated with Roflumilast-N-oxide showed a minor increase in SP-A1, SP-C and SP-D mRNA mainly in low expressing preparations. To overcome the effects of different basal levels of intracellular cAMP, cyclooxygenase was blocked by indomethacin and cAMP production was reconstituted by prostaglandin E2 (PGE2). Under these conditions SP-A1, SP-A2, SP-B and SP-D are increased by roflumilast-N-oxide in low expressing preparations. Roflumilast-N-oxide fosters the expression of SPs in human AEC-II via increase of intracellular cAMP levels potentially contributing to improved alveolar host defence and enhanced resolution of inflammation.  相似文献   

13.
Ligation of the TCR along with the coreceptor CD28 is necessary to elicit T cell activation in vivo, whereas TCR triggering alone does not allow a full T cell response. Upon T cell activation of human peripheral blood T cells, we found that the majority of cAMP was generated in T cell lipid rafts followed by activation of protein kinase A. However, upon TCR and CD28 coligation, beta-arrestin in complex with cAMP-specific phosphodiesterase 4 (PDE4) was recruited to lipid rafts which down-regulated cAMP levels. Whereas inhibition of protein kinase A increased TCR-induced immune responses, inhibition of PDE4 blunted T cell cytokine production. Conversely, overexpression of either PDE4 or beta-arrestin augmented TCR/CD28-stimulated cytokine production. We show here for the first time that the T cell immune response is potentiated by TCR/CD28-mediated recruitment of PDE4 to lipid rafts, which counteracts the local, TCR-induced production of cAMP. The specific recruitment of PDE4 thus serves to abrogate the negative feedback by cAMP which is elicited in the absence of a coreceptor stimulus.  相似文献   

14.
Enzymatic digestion of the interstitial tissue of early juvenile and adult rat testes resulted in an enrichment of the Leydig cell population. The cells of the intertubular preparation from adult testes were separated by centrifugal elutriation, according to differences in sedimentation velocity, a counter-flow centrifugation technique leading to 70% Leydig cell purity. Using this approach, it was possible to demonstrate that Leydig cells from adult testes contain only low affinity isoenzymes of cyclic AMP phosphodiesterase (PDE; E.C.: 3.1.4.17), an intracellular regulator of cAMP. Starch gel electrophoresis showed that the isozyme of cAMP PDe of Leydig cells is masked in crude testis homogenates due to the relatively low level of these cells in the total population. In Leydig cells, there are two different electrophoretic forms expressed which resemble two of eleven different molecular forms of cAMP PDE demonstrated for comparison in 21 different organs of the adult rat. An interstitial cell preparation from early juvenile testes, with a Leydig cell content of up to 20%, was also investigated electrophoretically with regard to molecular forms of cAMP PDE, the properties of which were characterized by kinetics analysis of cAMP hydrolysis. The results presented are discussed in relation to the onset of testosterone synthesis in Leydig cells of prepubertal rats leading to the initiation of male puberty.  相似文献   

15.
Clear cell renal cell carcinoma (ccRCC) is the most lethal form of kidney cancer and effective treatment regimens are yet to be established. Tyrosine kinase inhibitors (TKI) have widely been used as ccRCC therapeutics, but their efficacy is limited due to accompanying resistance mechanisms. Previous studies have provided substantial evidence for crosstalk between cAMP and the MAPK/ERK signaling pathway. Low levels of intracellular cAMP have been found in several human malignancies and some data suggest that elevation of cAMP expression can be achieved by phosphodiesterase 4 (PDE4) inhibition, resulting in cell growth arrest and/or cell death. The effects of crosstalk between cAMP and the MAPK/ERK pathway on the development progression in ccRCR, however, remain to be fully understood. In this study, we sought to explore the involvement of PDE4 in ccRCC and to assess its potential as a target for therapeutic intervention. We demonstrated that PDE4D is the predominant subtype of PDE4 expressed in healthy and cancerous renal cell lines, particularly in metastatic Caki-1 cells. We generated a CRISPR/Cas9-mediated PDE4D-KO Caki-1 cell model and showed that PDE4D depletion reduced cell proliferation and recovered cAMP expression in these cells. PDE4D-KO and/or PDE4 inhibition with the FDA approved PDE4 inhibitor, roflumilast, also attenuated MAPK/ERK signaling in a CRAF-dependent manner. Most interestingly, we showed that PDE4D-KO enhanced the effectiveness of the TKI, sorafenib, to stunt cell survival. In conclusion, we provide preliminary evidence of PDE4 involvement in ccRCC and suggest a rationale for dual tyrosine kinase/PDE4D targeting in patients with CRAF-dependent MAPK activation.  相似文献   

16.
Persistent elevations of cAMP levels are generally accompanied by an inhibition of granulocyte functions. Phosphodiesterases play a critical role in regulating intracellular levels of cAMP. The expression of three isoforms of type 4 cAMP-specific phosphodiesterase (PDE4) in neutrophils suggests diversity of isoform localization and targeting in regulating cell function. The sites of cAMP regulation in granulocytes by the PDE4A isoform were investigated by immunoelectron microscopy. PDE4A was localized uniformly in all granule classes of eosinophils, but was restricted in neutrophils to a subset of myeloperoxidase (MPO)-containing granules that were round or elongated with a central crystalloid core. Granulocytes were stimulated with fMLP to investigate the sites of PDE4A targeting during cell activation. In neutrophils, fMLP induced a rapid (1 min) translocation of granules containing PDE4A to the plasmalemma, where some PDE4A and MPO were exocytosed. In these cells, PDE4A labeling within granules was focal and no longer homogeneous. While immunogold labeling of PDE4A was reduced after fMLP stimulation, staining of MPO-containing granules remained high. Extracellular release of PDE4A was also observed in eosinophils stimulated with fMLP. Morphometry revealed that Au labeling was significantly reduced within 1 min, and that there was a shift in PDE4A localization within eosinophil granules from the crystalline core to the matrix. Fluctuations of cAMP levels and ectoprotein kinase activity with PKA properties occur in blood under normal and pathological conditions. The exclusive localization of PDE4A within granules of neutrophils and eosinophils suggests that PDE4A may function to downregulate cAMP signaling at the cell membrane and/or in the extracellular space at the time of granule release.  相似文献   

17.
《Cellular signalling》2002,14(3):277-284
PDE7A is a recently described 3′,5′-cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase (PDE) whose expression has been detected in T-cells. As treatment with the methylxanthine theophylline, a nonspecific PDE inhibitor, induces apoptosis in leukemic cells from patients with the B-lineage malignancy chronic lymphocytic leukemia (CLL), we sought to determine if PDE7A was a target of theophylline therapy in such cells. Western analysis revealed expression of PDE7A in normal human splenic B-cells, primary CLL cells, and in a CLL-derived cell line (WSU-CLL). Among the six cAMP PDEs (PDE1B, PDE3B, PDE4A, PDE4B, PDE4D, and PDE7) examined in WSU-CLL, only PDE7A levels were augmented by treatment with methylxanthines. The activity of PDE7A isolated from the WSU-CLL cell line by immunoprecipitation was inhibited by theophylline and IBMX with IC50 values of 343.5 and 8.6 μM, respectively. WSU-CLL PDE7A was also up-regulated by a novel specific inhibitor (IC242), which inhibits PDE7A from WSU-CLL cells with an IC50 value of 0.84 μM. IC242-mediated up-regulation of PDE7A was blocked by the protein kinase A (PKA) inhibitor H-89.  相似文献   

18.
It has been shown that cyclic GMP (cGMP) modulates the inflammatory responses of macrophages, but the underlying molecular mechanisms are still poorly understood. Looking for proteins potentially regulated by cGMP in rat peritoneal macrophages (PMs), in this study we analyzed expression and activity of cGMP-hydrolyzing and cGMP-regulated phosphodiesterases (PDEs). It was found that freshly isolated peritoneal exudate macrophages (PEMs) express enzymes belonging to families PDE1-3, PDE5, PDE10, and PDE11. Analysis of substrate specificity, sensitivity to inhibitors, and subcellular localization showed that PDE2 and PDE3 are the main cGMP-regulated PDE isoforms in PEMs. The profile of PDE expression was altered by maintaining PEMs in culture and treatment with bacterial endotoxin (LPS). After 24 h culture, PDE5 was not present and the levels of PDE2, PDE3, and PDE11 were markedly decreased. However, their expression and activity was recovered after treatment of cultured cells with LPS. A similar pattern of changes was observed for the expression of TNFalpha, but not for guanylyl cyclase A (GC-A). LPS up-regulated PDE expression also in resident peritoneal macrophages (RPMs), although not all PDEs present in PEMs were detected in RPMs. Taken together, our results show that in rat PMs expression of cGMP-dependent PDEs positively correlates with the activation state of cells. Moreover, the fact that most of these PDEs hydrolyze also cAMP indicates that cGMP can play a role of potent regulator of cAMP signaling in macrophages.  相似文献   

19.
《Cellular signalling》2014,26(9):1807-1817
Cyclic nucleotide phosphodiesterases (PDEs) regulate the intracellular concentrations and effects of adenosine 3′,5′-cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic monophosphate (cGMP). The role of PDEs in malignant tumor cells is still uncertain. The role of PDEs, especially PDE2, in human malignant melanoma PMP cell line was examined in this study. In PMP cells, 8-bromo-cAMP, a cAMP analog, inhibited cell growth and invasion. However, 8-bromo-cGMP, a cGMP analog, had little or no effect. PDE2 and PDE4, but not PDE3, were expressed in PMP cells. Growth and invasion of PMP cells were inhibited by erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), a specific PDE2 inhibitor, but not by rolipram, a specific PDE4 inhibitor. Moreover, cell growth and invasion were inhibited by transfection of small interfering RNAs (siRNAs) specific for PDE2A and a catalytically-dead mutant of PDE2A. After treating cells with EHNA or rolipram, intracellular cAMP concentrations were increased. Growth and invasion were stimulated by PKA14-22, a PKA inhibitor, and inhibited by N6-benzoyl-c AMP, a PKA specific cAMP analog, whereas 8-(4-chlorophenylthio)-2′-O-methyl-cAMP, an Epac specific cAMP analog, did not. Invasion, but not growth, was stimulated by A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide. Based on these results, PDE2 appears to play an important role in growth and invasion of the human malignant melanoma PMP cell line. Selectively suppressing PDE2 might possibly inhibit growth and invasion of other malignant tumor cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号