首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodeterioration of polymeric materials affects a wide range of industries. Formation of microbial biofilms on surfaces of materials being considered for use on the International Space Station was investigated. The materials included fiber-reinforced polymeric composites, adhesive sealant, polyimide insulation foam, Teflon cable insulation, and aliphatic polyurethane coatings. In simulation experiments, bacterial biofilms formed readily on the surfaces of the materials at a wide range of temperatures and relative humidity. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. Subsequently, degradation of polymeric materials was mostly a result of both fungal and bacterial colonization in sequence, and fungi may have advantages in the early phase of surface colonization over bacteria, especially on relatively resistant polymeric materials. These microorganisms are commonly detected on spacecraft on hardware and in the air. Furthermore, degradation of polymeric materials was documented with electrochemical impedance spectroscopy (EIS). The mechanisms of deterioration of polymeric materials were due to the availability of carbon source from the polymer, such as additives, plasticizers, and other impurities, in addition to the polymeric matrices. Microbial degradation of plasticizer phthalate esters is discussed for the microorganisms involved and the biochemical pathways of degradation. Current results suggest that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation.  相似文献   

2.
This paper reports results of biodegradation studies of polyimide coatings exposed to a mixed fungal culture using electrochemical impedance spectroscopy (EIS). The fungal consortium was originally isolated from degraded polyimides and identified species include Aspergillus versicolor, Cladosporium cladosporioides, and a Chaetomium species. Actively growing fungi on polyimides yield distinctive EIS spectra through time, indicative of failure of the polymer integrity compared to the uninoculated controls. An initial decline in coating resistance was related to the partial ingress of water molecules and ionic species into the polymeric matrices. This was followed by further degradation of the polymers by activity of the fungi. The relationship between the changes in impedance spectra and microbial degradation of the coatings was further supported by scanning electron microscopy, showing extensive colonization of the polyimide surfaces by the fungi. Our data indicate that EIS can be a sensitive and informative technique for evaluating the biosusceptibility of polymers and coatings.  相似文献   

3.
Microorganisms may be responsible for physical and chemical changes in composite materials. Inoculation of a fungal consortium to pre-sterilized coupons of five composites resulted in deep penetration into the interior of all materials at a temperature of approximately 22°C within 5 weeks. Scanning electron microscopy (SEM) showed that the inoculated composites were etched by the microorganisms. None of the five composites tested resisted fungal attack. Inoculation of extracts of these composites with the same fungi resulted in higher growth compared to the control, suggesting that chemical compounds leached from the composites were utilized by microorganisms as a source of carbon and energy. Studies with pure fibers used in the manufacture of composite materials showed that the fungi grew rapidly on both glass and carbon fibers in the presence of the fungal consortium. Our study indicates that microorganisms pose a threat to composite materials. We are currently investigating chemical and physical changes induced in these materials by the growth of fungi.  相似文献   

4.
Formation of microbial biofilms on surfaces of a wide range of materials being considered as candidates for use on the International Space Station was investigated. The materials included a fibre-reinforced polymeric composite, an adhesive sealant, a polyimide insulation foam, teflon cable insulation, titanium, and an aliphatic polyurethane coating. They were exposed to a natural mixed population of bacteria under controlled conditions of temperature and relative humidity (RH). Biofilms formed on the surfaces of the materials at a wide range of temperatures and RHs. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. The biocide, diiodomethyl-p-tolyl sulfone, impregnated in the polyurethane coating, was ineffective against microbial colonization and growth. Degradation of the polyurethane coatings was monitored with electrochemical impedance spectroscopy (EIS). The impedance spectra indicated that microbial degradation of the coating occurred in several stages. The initial decreases in impedance were due to the transport of water and solutes into the polymeric matrices. Further decreases were a result of polymer degradation by microorganisms. Our data showed that these candidate materials for space application are susceptible to biofilm formation and subsequent degradation. Our study suggests that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation.  相似文献   

5.
In the present study, the main focus was the characterization and application of the by‐product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic‐type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p‐hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin–formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m?1 for a 40 wt% sisal fiber‐reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber‐reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107:612–621. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
The aims of this study were: 1) to characterize the solubility and water absorption of different composite resins used as dental restorative materials; 2) to analyse their surface morphology using S.E.M. The resins tested were a mixture of glycidyl methacrylate (Bis-GMA) and TEGMA filled with silane-coated particles of inorganic fillers, and Bis-GMA and urethane resin. Cylindrical samples of composite resin were polymerized and stored in distilled water and weighed after different times. SEM analysis demonstrated voids and porous in several samples. The present study shows that dental restorative composite loose a small percentage of their components during storage time and that the type of resin, the nature of fillers and the methods of polymerization greatly influence water uptake and solubility of dental composite resin materials. These findings could explain the loss of anatomic form and the occlusal degradation of dental composites in "in vivo" conditions.  相似文献   

7.
Daoyuan Yang 《Biofouling》2020,36(4):389-402
Abstract

Most studies dealing with monitoring the dynamics of biofilm formation use microbial suspensions at high concentrations. These conditions do not always represent food or water distribution systems. A continuous flow system capable of controlling the concentration of the microbial suspension stream from 104 to 106 CFU ml?1 is reported. Pseudomonas putida biofilms formed using 100-fold, 1,000-fold or 10,000-fold diluted bacterial suspensions were monitored in-line by electrochemical impedance spectroscopy (EIS) and total plate counts. Randles equivalent circuit model and a modified Randles model with biofilm elements were used to fit the EIS data. In Randles equivalent circuit, the charge transfer resistance decreased as the biofilm formed. The log colony counts of the biofilm correlated to the charge transfer resistance. In the biofilm model, the biofilm resistance and the double layer capacitance decreased as the biofilm formed. The log colony counts of the biofilm correlated to the biofilm resistance.  相似文献   

8.
The measurement of the physical extent of opening of the upper esophageal sphincter (UES) during bolus swallowing has to date relied on videofluoroscopy. Theoretically luminal impedance measured during bolus flow should be influenced by luminal diameter. In this study, we measured the UES nadir impedance (lowest value of impedance) during bolus swallowing and assessed it as a potential correlate of UES diameter that can be determined nonradiologically. In 40 patients with dysphagia, bolus swallowing of liquids, semisolids, and solids was recorded with manometry, impedance, and videofluoroscopy. During swallows, the UES opening diameter (in the lateral fluoroscopic view) was measured and compared with automated impedance manometry (AIM)-derived swallow function variables and UES nadir impedance as well as high-resolution manometry-derived UES relaxation pressure variables. Of all measured variables, UES nadir impedance was the most strongly correlated with UES opening diameter. Narrower diameter correlated with higher impedance (r = -0.478, P < 0.001). Patients with <10 mm, 10-14 mm (normal), and ≥ 15 mm UES diameter had average UES nadir impedances of 498 ± 39 Ohms, 369 ± 31 Ohms, and 293 ± 17 Ohms, respectively (ANOVA P = 0.005). A higher swallow risk index, indicative of poor pharyngeal swallow function, was associated with narrower UES diameter and higher UES nadir impedance during swallowing. In contrast, UES relaxation pressure variables were not significantly altered in relation to UES diameter. We concluded that the UES nadir impedance correlates with opening diameter of the UES during bolus flow. This variable, when combined with other pharyngeal AIM analysis variables, may allow characterization of the pathophysiology of swallowing dysfunction.  相似文献   

9.
Poly(sulfosalicylic acid) and single-stranded DNA composite (PSSA–ssDNA)-modified glassy carbon electrode (GCE) was prepared by electropolymerization and then successfully used to simultaneously determine adenine (A), guanine (G), and thymine (T). The characterization of electrochemically synthesized PSSA–ssDNA film was investigated by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the simultaneous determination of A, G, and T in 0.1 M phosphate buffer solution (PBS, pH 7.0). Well-separated voltammetric peaks were obtained among A, G, and T presented in the analyte mixture. Under the optimal conditions, the peak currents for A, G, and T increased linearly with the increase of analyte mixture concentration in the ranges of 6.5 × 10−8 to 1.1 × 10−6, 6.5 × 10−8 to 1.1 × 10−6, and 4.1 × 10−6 to 2.7 × 10−5 M, respectively. The detection limits (signal/noise = 3) for A, G, and T were 2.2 × 10–8, 2.2 × 10–8, and 1.4 × 10–6 M, respectively.  相似文献   

10.
A double-stranded calf thymus DNA (dsDNA) was physisorbed onto a polypyrrole (PPy) nanofiber film that had been electrochemically deposited onto a Pt electrode. The surface morphology of the polymeric film was characterized using scanning electron microscopy (SEM). The electrochemical characteristics of the PPy film and the DNA deposited onto the PPy modified electrode were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Then the interaction of DNA with salicylic acid (SA) and acetylsalicylic acid (ASA), or aspirin, was studied on the electrode surface with DPV. An increase in the DPV current was observed due to the oxidation of guanine, which decreased with the increasing concentrations of the ligands. The interactions of SA and ASA with the DNA follow the saturation isotherm behavior. The binding constants of these interactions were 1.15 × 104 M for SA and 7.46 × 105 M for ASA. The numbers of binding sites of SA and ASA on DNA were approximately 0.8 and 0.6, respectively. The linear dynamic ranges of the sensors were 0.1–2 μM (r2 = 0.996) and 0.05–1 mM (r2 = 0.996) with limits of detection of 8.62 × 10−1 and 5.24 × 10−6 μM for SA and ASA, respectively.  相似文献   

11.
【目的】利用石墨烯与多壁碳纳米管复合材料协同刃天青修饰微生物燃料电池(Microbial fuel cell,MFC)阳极,提高MFC的运行性能。【方法】以碳布为基底,采用滴涂法分别制备了刃天青/碳布(R/CC)、刃天青+石墨烯/碳布(R+GNS/CC)、刃天青+多壁碳纳米管/碳布(R+MWCNT/CC)、刃天青+石墨烯+多壁碳纳米管/碳布(R+GNS+MWCNT/CC)四种阳极材料。【结果】在降解高氯酸盐的过程中,与刃天青/碳布(最高输出电压54 m V)相比,刃天青+石墨烯/碳布、刃天青+多壁碳纳米管/碳布和刃天青+石墨烯+多壁碳纳米管/碳布阳极MFC最高输出电压分别为87、145、275 m V,分别提高了61.11%、168.52%、409.26%;高氯酸盐的还原速率也分别提高了59.1%、89.7%、147.3%。4种阳极的电化学交流阻抗(EIS)和塔菲尔(Tafel)测试发现,与刃天青/碳布阳极相比,刃天青+石墨烯/碳布、刃天青+多壁碳纳米管/碳布阳极活化内阻减小,电极反应速率提高,但刃天青+石墨烯+多壁碳纳米管/碳布阳极的活化内阻更小,电极反应速率更快,同时4种阳极附着微生物胞外聚合物(EPS)分析表明,修饰过的阳极附着微生物数量增加,多糖减少,R+GNS+MWCNT/CC阳极变化最大,更有利于微生物传递电子。【结论】石墨烯、多壁碳纳米管复合材料协同刃天青修饰MFC阳极可以减小活化内阻从而加快电子传递,进而提高MFC的性能。  相似文献   

12.
Mineralization of polymeric wood lignin and its substructures is a result of complex reactions involving oxidizing and reducing enzymes and radicals. The degradation of methoxyl groups is an essential part of this process. The presence of wood greatly stimulates the demethoxylation of a non-phenolic lignin model compound (a [O14CH3]-labeled β-O-4 dimer) by the lignin-degrading white-rot fungi Phlebia radiata and Phanerochaete chrysosporium. When grown on wood, both fungi produced up to 47 and 40% 14CO2 of the applied 14C activity, respectively, under air and oxygen in 8 weeks. Without wood, the demethoxylation of the dimer by both fungi was lower, varying between 0.5 and 35%. Addition of nutrient nitrogen together with glucose decreased demethoxylation when the fungi were grown on spruce wood under air. Because the evolution of 14CO2 in the absence of wood was poor, the fungi may have preferably used wood as a carbon and nitrogen source. The amount of fungal mycelium, as determined by the ergosterol assay, did not show connection to demethoxylation. P. radiata also showed a high demethoxylation of [O14CH3]-labeled vanillic acid in the presence of birch wood. The degradation of lignin and lignin-related substances should be studied in the presence of wood, the natural substrate for white-rot fungi.  相似文献   

13.
An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjær impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan’s grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.  相似文献   

14.
It has been demonstrated that polymeric resins can be used as receiving phase in passive samplers designed for the detection of lipophilic marine toxins at sea and was referred to as solid phase adsorption toxin tracking (SPATT). The present study describes the uptake and desorption behaviour of the lipophilic marine toxins okadaic acid (OA) and dinophysistoxin-1 (DTX1) from Prorocentrum lima cultures by five styrene—divinylbenzene based polymeric resins Sepabeads® SP850, Sepabeads® SP825L, Amberlite® XAD4, Dowex® Optipore® L-493 and Diaion® HP-20. All resins accumulated OA and DTX1 from the P. lima culture with differences in adsorption rate and equilibrium rate. Following statistical evaluation, HP-20, SP850 and SP825L demonstrated similar adsorption rates. However, possibly due to its larger pore size, the HP-20 did not seem to reach equilibrium within 72 h exposure as opposed to the SP850 and SP825L. This was confirmed when the resins were immersed at sea for 1 week on the West Coast of Ireland. Furthermore, this work also presents a simple and efficient extraction method suitable to SPATT samplers exposed to artificial or natural culture media.  相似文献   

15.
The antagonistic activity of two yeast strains (Pichia anomala (E.C. Hansen) Kurtzman, strain K and Candida oleophila Montrocher, strain O) against the parasitic complex responsible for banana crown rot was evaluated. The strains were applied at three different concentrations (106, 107, 108 cfu/ml) and their efficacy tested in vivo on three separate fungi (Colletotrichum musae (Berk. & Curt.) Arx, Fusarium moniliforme Sheldon, and Cephalosporium sp.) and on a parasitic complex formed by association of these three fungi. At the concentrations used C. musae appeared to be the most pathogenic. The complex showed intermediate aggressiveness between C. musae and both other fungi.Statistically significant antagonistic effects were observed on C. musae, F. moniliforme, and the fungal complex. The highest protection level (54.4%) was observed with strain O added at 108 cfu/ml on crowns previously inoculated with the fungal complex. The level was lower when the fungi were inoculated separately.Furthermore, the antagonistic effect was strongly reinforced when strain O at 108 cfu/ml was applied 24 h before fungal complex inoculation (59.9%), as compared to its application 15 min (24.3%) or 3 h (27.3%) after fungal complex inoculation. Bananas showed increased susceptibility to the fungal complex from March to June, and this influenced the level of protection by yeast, which decreased over the same period. A strict negative correlation (R2 = 0.83) was highlighted between susceptibility of banana to crown rot and protection provided by yeast.  相似文献   

16.
Novel biocomposites were fabricated by impregnating β-tricalcium phosphate (β-TCP)/zirconia particles into the polymers matrix. The composite materials were characterized using thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) analyzes and Scanning Electron Microscopy (SEM). The results confirmed the conversion of hydroxyapatite (HA) to β-TCP at a sintering temperature of 1150 °C with or without zirconia powder. The in vitro behavior was assessed via measurement of calcium and phosphorus ions in SBF (simulated body fluid). FT-IR and SEM of the composites were performed pre and post immersion in SBF. The results prove that the bone like apatite layer formation was enhanced on the β-TCP-Z20/polymeric composite surface more than that on the β-TCP-Z10/polymeric composite. Therefore, the data confirmed that zirconia plays an important role in the enhancement of the apatite formation. The conclusions proved that the β-TCP-Z20/polymeric biocomposites, containing 20% of zirconia, are promising for bone remodeling applications.  相似文献   

17.
A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3±56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.  相似文献   

18.
Some strains of white rot fungi, non-lignolytic fungi and litter-decomposing basidiomycetes have been recognized as PAH degraders. The purpose of our research was to enlarge the scope of PAH-degrading fungi and explore the huge endophytic microorganism resource for bioremediation of PAHs. In this study, phenanthrene was used as a model PAHs compound. Nine strains of endophytic fungi isolated from four kinds of plant from Eupharbiaceae were screened for degradation of phenanthrene. The endophytic fungus Ceratobasidum stevensii (strain B6) isolated from Bischofia polycarpam showed high degradation efficiency and was selected for further studies. Into the fungal culture, 100 mg l−1 phenanthrene was added, and after 10 days of incubation, about 89.51% of the phenanthrene was removed by strain B6. Extracellular ligninolytic enzyme activities of strain B6 were tested. The results showed that manganese peroxidase [MnP] was the predominant ligninolytic enzyme and that its production was greatly induced by the presence of phenanthrene. To confirm the involvement of MnP in phenanthrene degradation, promotion and inhibition studies on MnP in different concentration level of Mn2+ and NaN3 were performed. Additionally, fungal mycelium-free and resuspended experiments were carried out. The results showed no apparent correlation between MnP activity and phenanthrene degradation. The mycelium and fresh medium were the crucial factors affecting the degradation of phenanthrene. To date, this is the first report on PAH degradation by Ceratobasidum stevensii. This study suggests that endophytic fungi might be a novel and important resource for microorganisms that have PAH-degrading capabilities.  相似文献   

19.
This research aimed to develop a rapid and nondestructive method to model the growth and discrimination of spoilage fungi, like Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum, based on hyperspectral imaging system (HIS). A hyperspectral imaging system was used to measure the spectral response of fungi inoculated on potato dextrose agar plates and stored at 28°C and 85% RH. The fungi were analyzed every 12 h over two days during growth, and optimal simulation models were built based on HIS parameters. The results showed that the coefficients of determination (R2) of simulation models for testing datasets were 0.7223 to 0.9914, and the sum square error (SSE) and root mean square error (RMSE) were in a range of 2.03–53.40×10−4 and 0.011–0.756, respectively. The correlation coefficients between the HIS parameters and colony forming units of fungi were high from 0.887 to 0.957. In addition, fungi species was discriminated by partial least squares discrimination analysis (PLSDA), with the classification accuracy of 97.5% for the test dataset at 36 h. The application of this method in real food has been addressed through the analysis of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum inoculated in peaches, demonstrating that the HIS technique was effective for simulation of fungal infection in real food. This paper supplied a new technique and useful information for further study into modeling the growth of fungi and detecting fruit spoilage caused by fungi based on HIS.  相似文献   

20.
Lignocellulose degradation by Streptomyces viridosporus results in the oxidative depolymerization of lignin and the production of a water-soluble lignin polymer, acid-precipitable polymeric lignin (APPL). The effects of the culture pH on lignin and cellulose metabolism and APPL production by S. viridosporus are reported. Dry, ground, hot-water-extracted corn (Zea mays) lignocellulose was autoclaved in 1-liter reagent bottles (5 g per bottle) and inoculated with 50-ml volumes of S. viridosporus cells suspended in buffers of specific pH (pH 6.0 to 9.2 at 0.4 pH unit intervals). Four replicates of inoculated cultures and of uninoculated controls at each pH were incubated as solid-state fermentations at 37°C. After 6 weeks of incubation the percent loss of lignocellulose, lignin, and carbohydrate and the amount of APPL produced were determined for each replicate. Optimal lignocellulose degradation, as shown by substrate weight loss, was observed in the pH range of 8.4 to 8.8. Only minor differences were seen in the Klason lignin, carbohydrate, protein, and ash contents of the APPLS produced by cultures at each pH. The effects of pH on the degradation of a spruce (Picea pungens) [14C-lignin]lignocellulose and a Douglas fir (Pseudotsuga menziesii) [14C-glucan]-lignocellulose were also determined at pH values between 6.5 and 9.5 (0.5 pH unit intervals). The incubations were carried out for 3 weeks at 37°C with bubbler-tube cultures. The percentage of initial 14C recovered as 14CO2, 14C-labeled water-soluble products, and [14C]APPL was then determined. The mineralization of lignin and cellulose to CO2 was optimal at pHs 6.5 and 7.0, respectively. However, the optimum for lignin and cellulose solubilization was pH 8.5, which correlated with the pH 8.5 optimum for APPL production. Overall, the data show that, whereas lignin mineralization is optimal at neutral to slightly acidic pHs, lignocellulose degradation with lignin solubilization and APPL production is promoted by alkaline pHs. These findings indicate that lignin-solubilizing actinomycetes may play an important role in the metabolism of lignin in neutral to alkaline soils in which ligninolytic fungi are not highly competitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号