首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Fibroblast growth factor 2 (FGF2) and glial cell line-derived neurotrophic factor (GDNF) are required to recapitulate spermatogonial stem cell (SSC) self-renewal in vitro. Although studies have revealed the role of the GDNF signaling pathway in SSCs, little is known about how FGF2 is involved. In the present study, we assessed the role of the FGF2 signaling pathway using a mouse germline stem (GS) cell culture system that allows in vitro expansion of SSCs. Adding GDNF or FGF2 induced phosphorylation of MAPK1/3, and adding the MAP2K1 inhibitor PD0325091 reduced GS cell proliferation and MAPK1/3 phosphorylation. Moreover, GS cells transfected with an activated form of Map2k1 not only upregulated Etv5 and Bcl6b gene expression, but also proliferated in an FGF2-independent manner, suggesting that they act downstream of MAP2K1 signaling to drive SSC self-renewal. Although GS cells transfected with Map2k1, Etv5 or Bcl6b showed normal spermatogonial markers, transplanting GS cells expressing Bcl6b into infertile mouse testes resulted in the formation of a germ cell tumor, suggesting that excessive self-renewal signals causes tumorigenic conversion. These results show that FGF2 depends on MAP2K1 signaling to drive SSC self-renewal via upregulation of the Etv5 and Bcl6b genes.  相似文献   

2.
3.
ObjectivesFibroblast growth factor 9 (FGF9) is expressed by somatic cells in the seminiferous tubules, yet little information exists about its role in regulating spermatogonial stem cells (SSCs).Materials and Methods Fgf9 overexpression lentivirus was injected into mouse testes, and PLZF immunostaining was performed to investigate the effect of FGF9 on spermatogonia in vivo. Effect of FGF9 on SSCs was detected by transplanting cultured germ cells into tubules of testes. RNA‐seq of bulk RNA and single cell was performed to explore FGF9 working mechanisms. SB203580 was used to disrupt p38 MAPK pathway. p38 MAPK protein expression was detected by Western blot and qPCR was performed to determine different gene expression. Small interfering RNA (siRNA) was used to knock down Etv5 gene expression in germ cells.ResultsOverexpression of Fgf9 in vivo resulted in arrested spermatogenesis and accumulation of undifferentiated spermatogonia. Exposure of germ cell cultures to FGF9 resulted in larger numbers of SSCs over time. Inhibition of p38 MAPK phosphorylation negated the SSC growth advantage provided by FGF9. Etv5 and Bcl6b gene expressions were enhanced by FGF9 treatment. Gene knockdown of Etv5 disrupted the growth effect of FGF9 in cultured SSCs along with downstream expression of Bcl6b.ConclusionsTaken together, these data indicate that FGF9 is an important regulator of SSC proliferation, operating through p38 MAPK phosphorylation and upregulating Etv5 and Bcl6b in turn.  相似文献   

4.
5.
6.
Spermatogonial stem cells (SSCs) support life-long spermatogenesis by self-renewing and producing spermatogonia committed to differentiation. In vitro, SSCs form three-dimensional spermatogonial aggregates (clusters) when cultured with glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2); serial passaging of clusters results in long-term SSC maintenance and expansion. However, the role of these growth factors in controlling patterns of SSC division and fate decision has not been understood thoroughly. We report here that in a short-term culture, GDNF and FGF2 increase the number of dividing SSCs, but not the total SSC number, compared to a no-growth-factor condition. Since the total germ cell number increases with growth factors, these results suggest that GDNF and FGF2 promote a SSC division pattern that sustains the size of the stem cell pool while generating committed progenitors. Our data also show that SSC numbers increase when the cluster structure is disintegrated and cell–cell interaction in clusters is disrupted. Collectively, these results suggest that in this culture system, GDNF and FGF2 stimulate SSC divisions that promote self-renewal and differentiation in the SSC population, and imply that the destruction of the cluster structure, a potential in vitro niche, may contribute to SSC expansion.  相似文献   

7.
Spermatongonial stem cells (SSCs) are unique testis cells that are able to proliferate, differentiate, and transmit genetic information to the next generation. However, the effect of different Sertoli cell types on the expression of specific SSC genes is not yet well understood. In this study, we compare the in vitro effect of adult Sertoli cells, embryonic Sertoli cells, and TM4 (a Sertoli cell line) as feeder layers on the expression of SSC genes. SSCs were isolated from the testis of adult male mice and purified by differential plating. Following enrichment, SSCs were cultivated for 1 and 2 wk in the presence of various feeders. The expression of SSC-specific genes (Mvh, ZBTB, and c-kit) was evaluated by real-time polymerase chain reaction. Our results revealed that expression of the specific SSC genes was significantly higher in the embryonic Sertoli cells after 1 and 2 wk compared to the adult Sertoli cells and the TM4 group. Our finding suggest that co-culturing of SSCs with embryonic Sertoli cells is helpful for in vitro cultivation of SSCs and might improve the self-renewal of these stem cells.  相似文献   

8.
Spermatogonial stem cells (SSCs) are essential for spermatogenesis, and these adult tissue stem cells balance self-renewal and differentiation to meet the biological demand of the testis. The developmental dynamics of SSCs are controlled, in part, by factors in the stem cell niche, which is located on the basement membrane of seminiferous tubules situated among Sertoli cells. Sertoli cells produce glial cell line-derived neurotrophic factor (GDNF), and disruption of GDNF expression results in spermatogenic defects and infertility. The GDNF signals through a receptor complex that includes GDNF family receptor alpha1 (GFRA1), which is thought to be expressed by SSCs. However, expression of GFRA1 on SSCs has not been confirmed by in vivo functional assay, which is the only method that allows definitive identification of SSCs. Therefore, we fractionated mouse pup testis cells based on GFRA1 expression using magnetic activated cell sorting. The sorted and depleted fractions of GFRA1 were characterized for germ cell markers by immunocytochemistry and for stem cell activity by germ cell transplantation. The GFRA1-positive cell fraction coeluted with other markers of SSCs, including ITGA6 and CD9, and was significantly depleted of KIT-positive cells. The transplantation results confirmed that a subpopulation of SSCs expresses GFRA1, but also that the stem cell pool is heterogeneous with respect to the level of GFRA1 expression. Interestingly, POU5F1-positive cells were enriched nearly 15-fold in the GFRA1-selected fraction, possibly suggesting heterogeneity of developmental potential within the stem cell pool.  相似文献   

9.
10.
Endothelial cells line the blood vessel and precursor endothelial cells appear to have a pivotal effect on the organ formation of the heart, the embryonic development of the kidney, and the liver. Several growth factors including the fibroblast growth factors (FGF) seem to be involved in these processes. Ligands such as basic FGF produced and secreted by endothelial cells may also coordinate cellular migration, differentiation, and proliferation under pathological conditions including wound healing, tumorgenesis, and fibrogenesis in the adult. Recently we demonstrated the expression of two secreted FGFs, FGF16, and FGF18, in HUVEC and in rat aortic tissue. In the present report, we confirmed by RT-PCR analysis that FGF18 is wildly expressed in the cardiovascular tissue, while FGF16 showed a more restricted expression pattern. HUVEC clearly demonstrated chemotaxis towards FGF16 and FGF18. Both FGFs also enhanced cell migration in response to mechanical damage. However, recombinant FGF16 and FGF18 failed to induce endothelial cell proliferation or sprouting in a three-dimensional in vitro angiogenesis assay. Fgf18 expression was earlier reported in the liver, and we detected FGF18 expression in liver vascular and liver sinusoidal endothelial cells (LSECs), but not in hepatic parenchymal cells. Recombinant FGF18 stimulated DNA synthesis in primary hepatocytes, suggesting, that endothelial FGF18 might have a paracrine function in promoting growth of the parenchymal tissue. Interestingly, FGF2, which is mitogenic on endothelial cells and hepatocytes stimulates a sustained MAPK activation in both cell types, while FGF18 causes a short transient activation of the MAPK pathway in endothelial cells but a sustained activation in hepatocytes. Therefore, the difference in the time course of MAPK activation by the different FGFs appears to be the cause for the different cellular responses.  相似文献   

11.
12.
13.
Fibroblast growth factor-2 (FGF2) and vascular endothelial growth factor (VEGF) are two key regulators of placental angiogenesis. The potent vasodilator nitric oxide (NO) could also act as a key mediator of FGF2- and VEGF-induced angiogenesis. However, the postreceptor signaling pathways governing these FGF2- and VEGF-induced placental angiogenic responses are poorly understood. In this study, we assessed the role of endogenous NO, mitogen-activated protein kinase 3/1 (MAPK3/1), and v-akt murine thymoma viral oncogene homolog 1 (AKT1) in FGF2- and VEGF-stimulated proliferation of ovine fetoplacental endothelial (OFPAE) cells. Both FGF2 and VEGF time-dependently stimulated (P < 0.05) NO production and activated AKT1. Both FGF2- and VEGF-stimulated cell proliferation was dose-dependently inhibited (P < 0.05) by N(G)-monomethyl-L-arginine (L-NMMA; an NO synthase inhibitor), PD98059 (a selective MAPK3/1 kinase 1 and 2 [MAP2K1/2] inhibitor), or LY294002 (a selective phosphatidylinositol 3 kinase [PI3K] inhibitor) but not by phenyl-4,4,5,5 tetramethylimidazoline-1-oxyl 3-oxide (PTIO, a potent extracellular NO scavenger). At the maximal inhibitory dose without cytotoxicity, PD98059 and LY294002 completely inhibited VEGF-induced cell proliferation but only partially attenuated (P < 0.05) FGF2-induced cell proliferation. PD98059 and LY294002 also inhibited (P < 0.05) FGF2- and VEGF-induced phosphorylation of MAPK3/1 and AKT1, respectively. L-NMMA did not significantly affect FGF2- and VEGF-induced phosphorylation of either MAPK3/1 or AKT1. Thus, in OFPAE cells, both FGF2- and VEGF-stimulated cell proliferation is partly mediated via NO as an intracellular and downstream signal of MAPK3/1 and AKT1 activation. Moreover, activation of both MAP2K1/2/MAPK3/1 and PI3K/AKT1 pathways is critical for FGF2-stimulated cell proliferation, whereas activation of either one pathway is sufficient for mediating the VEGF-induced maximal cell proliferation, indicating that these two kinase pathways differentially mediate the FGF2- and VEGF-stimulated OFPAE cell proliferation.  相似文献   

14.
15.
The effects of insulin, somatomedin-C (Sm-C), epidermal growth factor (EGF), fibroblast growth factor (FGF), vitamin E, and retinoic acid on growth and function of immature cultured pig Sertoli cells were investigated. All these factors, except vitamin E, stimulated Sertoli cell DNA synthesis and proliferation. The mitogenic effects of insulin observed only at micromolar concentrations were similar to those induced by nanomolar concentrations of Sm-C or EGF, but significantly less than those induced by FGF. The effects of EGF and Sm-C were almost additive, whereas those of Sm-C and FGF were synergistic. After a 6-day treatment, FGF and retinoic acid induced a significant increase in the number of follicle-stimulating hormone (FSH) receptors per cell, and in FSH-induced cyclic adenosine 3',5'-monophosphate (cAMP) production. Sm-C, which alone had no effect on these two parameters, potentiated FGF action. Basal plasminogen activator activity was enhanced after the 6-day treatment with EGF plus insulin and, particularly, with FGF plus insulin. Similarly, the response of the latter group to FSH was significantly higher than in any other group of cells. FGF was also able to stimulate cell multiplication and enhanced the FSH receptor number of Sertoli cells isolated from 15- and 26-day-old rats. Thus, FGF is the most potent known mitogenic factor for cultured Sertoli cells, and it stimulates the phenotypic expression of these cells.  相似文献   

16.
We have shown that the cultured Sertoli cell from the immature rat contains a fibroblast growth factor (FGF)-like factor. It behaves as a cationic peptide, is a potent competence factor for BALB/c3T3 mouse embryo fibroblasts, and displays a high affinity for heparin. Both bovine basic FGF and Sertoli cell FGF-like factor rapidly increase c-fos mRNA in cultured Sertoli cells. FSH, serum, and phorbol esters individually stimulate c-fos in cultured Sertoli cells whereas platelet-derived growth factor, epidermal growth factor, and insulin-like growth factor-I have little affect. However, unlike FSH, basic FGF does not stimulate an increase in cAMP and unlike either serum or phorbol esters, basic FGF does not stimulate phosphoinositol turnover or intracellular calcium changes. When Sertoli cell protein kinase C activity is suppressed by preexposure to phorbol ester, basic FGF continues to be a potent stimulator of c-fos, indicating that the calcium/phospholipid pathway is not involved in FGF induction. Basic FGF and FSH also increase jun-B mRNA levels in cultured Sertoli cells. In response to FGF, jun-B is more transiently increased than c-fos. In contrast, in response to FSH, jun-B persists longer than c-fos. These results indicate that cultured Sertoli cells contain a FGF-like factor that increases c-fos mRNA via a mechanism not involving cAMP and the calcium/phospholipid pathways. The different responsiveness of c-fos and jun-B to FSH and basic FGF may explain differences in the ultimate actions of these two ligands.  相似文献   

17.
Self-renewal and differentiation of spermatogonial stem cell (SSC) are critical for male fertility and reproduction, both of which are highly regulated by testicular microenvironment. Exosomal miRNAs have emerged as new components in intercellular communication. However, their roles in the differentiation of SSC remain unclear. Here, we observed miR-486-5p enriched in Sertoli cell and Sertoli cell-derived exosomes. The exosomes mediate the transfer of miR-486-5p from Sertoli cells to SSCs. Exosomes release miR-486-5p, thus up-regulate expression of Stra8 (stimulated by retinoic acid 8) and promote differentiation of SSC. And PTEN was identified as a target of miR-486-5p. Overexpression of miR-486-5p in SSCs down-regulates PTEN expression, which up-regulates the expression of STRA8 and SYCP3, promotes SSCs differentiation. In addition, blocking the exosome-mediated transfer of miR-486-5p inhibits differentiation of SSC. Our findings demonstrate that miR-486-5p acts as a communication molecule between Sertoli cells and SSCs in modulating differentiation of SSCs. This provides a new insight on molecular mechanisms that regulates SSC differentiation and a basis for the diagnosis, treatment, and prevention of male infertility.  相似文献   

18.
A critical process for vascular endothelial growth factor (VEGF)- and fibroblast growth factor 2 (FGF2)-regulated cellular function is reversible protein phosphorylation, which is tightly controlled by a balance of protein kinases and phosphatases. We have reported that in ovine fetoplacental artery endothelial (OFPAE) cells, VEGF and FGF2 stimulate cell proliferation in part via activation of mitogen-activated protein kinase kinase 1/2 (MAP2K1/2)/mitogen-activated protein kinase 3/1 (MAPK3/1) and phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog 1 (AKT1) pathways. In the present study, we examined if protein phosphatase 3 (PPP3) mediated VEGF- and FGF2-stimulated OFPAE cell proliferation via modulating activation of MAPK3/1 and AKT1. Small interfering RNA (siRNA) targeting human PPP3 catalytic subunit alpha (PPP3CA) was used to suppress PPP3CA protein expression in OFPAE cells. Compared with the scrambled siRNA, PPP3CA siRNA decreased PPP3CA protein levels by approximately 97% without altering protein levels of protein phosphatase 2 catalytic subunit alpha, total MAPK3/1, total AKT1, or glyceraldehyde-3-phosphate dehydrogenase. Knockdown of PPP3CA protein expression enhanced VEGF-stimulated, but not FGF2-stimulated, cell proliferation. Knockdown of PPP3CA protein expression did not significantly affect VEGF-induced MAPK3/1 and AKT1 phosphorylation but attenuated FGF2-induced MAPK3/1 and AKT1 phosphorylation. Thus, to our knowledge, the present study is the first to demonstrate successful knockdown of PPP3CA protein expression in any cell model using a single pair of double-strained siRNA. Moreover, specific knockdown of PPP3CA protein expression enhances VEGF-stimulated, but not FGF2-stimulated, OFPAE cell proliferation and attenuates FGF2-induced, but not VEGF-induced, MAPK3/1 and AKT1 activation. Thus, PPP3CA differentially modulates the VEGF- and FGF2-stimulated cell proliferation and signaling cascades in OFPAE cells. These data also suggest that signaling molecules other than MAPK3/1 and AKT1 play an important role in VEGF- and FGF2-stimulated cell proliferation after knockdown of PPP3CA in OFPAE cells.  相似文献   

19.
Fibroblast growth factors (FGFs) play important roles in diverse aspects of animal development including mammalian lung epithelial cell proliferation, differentiation, and branching morphogenesis. We developed an in vitro lung epithelial cell culture system to study functions and mechanisms of FGFs in regulating growth and differentiation of primary foetal rat lung epithelial cells. In comparison with other growth factors such as IGF-I, EGF, and HGF, FGFs were the most potent mitogens in stimulating lung epithelial cell proliferation. In the presence of FGF-1, 2, or 7, the primary lung epithelial cells could be propagated for generations and grown for more than two mo in vitro. Among the three FGFs tested, FGF-7 showed the strongest stimulation in cell growth. FGF-2, on the other hand, is the most effective inducer of lung epithelial cell-specific surfactant protein gene expression (SP-A, -B, and -C). FGF-2 upregulated SP-C expression in a dose-dependent manner. More interestingly, the induction of surfactant protein gene expression by FGF-2 appeared to be independent of MAPK pathway, since the SP-C expression was not inhibited but rather augmented by MEK1 inhibitor which inhibited MAPK activation and cell proliferation. Similar effects were observed for the expressions of surfactant protein genes SP-A and SP-B. In contrast to MAPK, FGF-2-induced SP-C expression was partially inhibited by PI 3-kinase inhibitor wortmannin. These data suggest dynamic roles and complex signalling mechanisms of FGFs in regulating lung epithelial cell proliferation and differentiation. While a MAPK-dependent pathway is essential for all three FGFs to stimulate cell proliferation, a MAPK-independent pathway may be responsible for the FGF-2-induced surfactant protein gene expression. PI 3-kinase may play an important role in mediating FGF-2-induced lung epithelial cell differentiation during development.  相似文献   

20.
Fibroblast growth factors (FGFs) signal through high-affinity tyrosine kinase receptors to regulate a diverse range of cellular processes, including cell growth, differentiation and migration, as well as cell death. Here we identify XFLRT3, a member of a leucine-rich-repeat transmembrane protein family, as a novel modulator of FGF signalling. XFLRT3 is co-expressed with FGFs, and its expression is both induced after activation and downregulated after inhibition of FGF signalling. In gain- and loss-of function experiments, FLRT3 and FLRT2 phenocopy FGF signalling in Xenopus laevis. XFLRT3 signalling results in phosphorylation of ERK and is blocked by MAPK phosphatase 1, but not by expression of a dominant-negative phosphatidyl inositol 3-OH kinase (PI(3)K) mutant. XFLRT3 interacts with FGF receptors (FGFRs) in co-immunoprecipitation experiments in vitro and in bioluminescence resonance energy transfer assays in vivo. The results indicate that XFLRT3 is a transmembrane modulator of FGF-MAP kinase signalling in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号