首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in the separators for microbial fuel cells   总被引:2,自引:0,他引:2  
Separator plays an important role in microbial fuel cells (MFCs). Despite of the rapid development of separators in recent years, there are remaining barriers such as proton transfer limitation and oxygen leakage, which increase the internal resistance and decrease the MFC performance, and thus limit the practical application of MFCs. In this review, various separator materials, including cation exchange membrane, anion exchange membrane, bipolar membrane, microfiltration membrane, ultrafiltration membranes, porous fabrics, glass fibers, J-Cloth and salt bridge, are systematically compared. In addition, recent progresses in separator configuration, especially the development of separator electrode assemblies, are summarized. The advances in separator materials and configurations have opened up new promises to overcome these limitations, but challenges remain for the practical application. Here, an outlook for future development and scaling-up of MFC separators is presented and some suggestions are highlighted.  相似文献   

2.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

3.
Anaerobic bioenergy production processes including fermentative biohydrogen (BioH2), anaerobic digestion (AD) and bioelectrochemical system have been investigated for converting municipal waste or various biomass feedstock to useful energy carriers. However, the performance of a microbial fuel cell (MFC) fed on the effluent from a two-stage biogas production process has not yet been investigated extensively in continuous reactor operation on complex substrates. In this study we have investigated the extent to which a microbial fuel cell (MFC) can reduce COD and recover further energy from the effluent of a two-stage biohydrogen and biomethane system. The performance of a four-module tubular MFC was determined at six different organic loadings (0.036–6.149 g sCOD L−1 d−1) in terms of power generation, COD removal efficiency, coulombic efficiency (CE) and energy conversion efficiency (ECE). A power density of 3.1 W m−3 was observed at the OLR = 0.572 g sCOD L−1 d−1, which resulted in the highest CE (60%) and ECE (0.8%), but the COD removal efficiency decreased at higher organic loading rates (35.1–4.4%). The energy recovery was 92.95 J L−1 and the energy conversion efficiency, based on total influent COD was found to be 0.48–0.81% at 0.572 g sCOD L−1 d−1. However, the energy recovery by the MFC is only reported for a four-module reactor and improved performance can be expected with an extended module count, as chemical energy remained available for further electrogenesis.  相似文献   

4.
Liu Z  Liu J  Zhang S  Su Z 《Biotechnology letters》2008,30(6):1017-1023
This paper reports a novel configuration of stacked microbial fuel cells (MFCs) bridged internally through an extra cation exchange membrane (CEM). The MFC stack (MFCstack), assembled from two single MFCs (MFCsingle), resulted in double voltage output and half optimal external resistance. COD removal rate was increased from 32.4% to 54.5%. The performance improvement could be attributed to the smaller internal resistance and enhanced cations transfer. A result from a half cell study further confirmed the important role of the extra CEM. This study also demonstrated MFCs where the anode and cathode were sandwiched between two CEMs possessed significantly high power outputs  相似文献   

5.
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions.  相似文献   

6.
The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%.  相似文献   

7.
Wang A  Sun D  Cao G  Wang H  Ren N  Wu WM  Logan BE 《Bioresource technology》2011,102(5):4137-4143
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m3 H2/m3/d (based on the MEC volume), and a yield of 33.2 mmol H2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H2/g cellulose, with a total hydrogen production rate of 0.24 m3 H2/m3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.  相似文献   

8.
Hou B  Sun J  Hu YY 《Bioresource technology》2011,102(6):4433-4438
Different microfiltration membrane (MFM), proton exchange membrane (PEM) and ultrafiltration membranes (UFMs) with different molecular cutoff weights of 1 K (UFM-1K), 5 K (UFM-5K) and 10 K (UFM-10K) were incorporated into air-cathode single-chamber microbial fuel cells (MFCs) which were explored for simultaneous azo dye decolorization and electricity generation to investigate the effect of membrane on the performance of the MFC. Batch test results showed that the MFC with an UFM-1K produced the highest power density of 324 mW/m2 coupled with an enhanced coulombic efficiency compared to MFM. The MFC with UMF-10K achieved the fastest decolorization rate (4.77 mg/L h), followed by MFM (3.61 mg/L h), UFM-5K (2.38 mg/L h), UFM-1K (2.02 mg/L h) and PEM (1.72 mg/L h). These results demonstrated the possibility of using various membranes in the system described here, and showed that UFM-1K was the best one based on the consideration of both cost and performance.  相似文献   

9.
Glucose-fed microbial fuel cells (MFCs) have displayed low Coulombic efficiency (CE); one reason for a low CE is metabolite generation, causing significant electron loss within MFC systems. In the present study, notable electron loss (15.83%) is observed in glucose-fed MFCs due to residual propionate, a glucose metabolite. In order to enhance the low CE caused by metabolite generation, a dual-anode MFC (DAMFC) is constructed, which are separately enriched by dissimilar substrates (glucose and propionate, respectively) to effectively utilize both glucose and propionate in one-anode chamber. In the DAMFC, propionate ceases to exist as a source of electron loss, and thus the CE increased from 33 ± 6 to 59 ± 4%.  相似文献   

10.
Within the past 5?years, tremendous advances have been made to maximize the performance of microbial fuel cells (MFCs) for both “clean” bioenergy production and bioremediation. Most research efforts have focused on parameters including (i) optimizing reactor configuration, (ii) electrode construction, (iii) addition of redox-active, electron donating mediators, (iv) biofilm acclimation and feed nutrient adjustment, as well as (v) other parameters that contribute to enhanced MFC performance. To date, tremendous advances have been made, but further improvements are needed for MFCs to be economically practical. In this review, the diversity of electrogenic microorganisms and microbial community changes in mixed cultures are discussed. More importantly, different approaches including chemical/genetic modifications and gene regulation of exoelectrogens, synthetic biology approaches and bacterial community cooperation are reviewed. Advances in recent years in metagenomics and microbiomes have allowed researchers to improve bacterial electrogenicity of robust biofilms in MFCs using novel, unconventional approaches. Taken together, this review provides some important and timely information to researchers who are examining additional means to enhance power production of MFCs.  相似文献   

11.
A medium-scale (0.77 l) air-cathode, brush-anode microbial fuel cell (MFC) operated in fed-batch mode using xylose (20 mM) generated a maximum power density of 13 +/- 1 W/m(3) (673 +/- 43 mW/m(2)). Xylose was rapidly removed (83.5%) within 8 h of a 60-h cycle, with 42.1% of electrons in intermediates (8.5 +/- 0.2 mM acetate, 5.9 +/- 0.01 mM ethanol, 4.3 +/- 0.1 mM formate, and 1.3 +/- 0.03 mM propionate), 9.1% captured as electricity, 16.1% in the remaining xylose, and 32.7% lost to cell storage, biomass, and other processes. The final Coulombic efficiency was 50%. At a higher initial xylose concentration (54 mM), xylose was again rapidly removed (86.9% within 24 h of a 116-h cycle), intermediates increased in concentration (18.4 +/- 0.4 mM acetate, 7.8 +/- 0.4 mM ethanol and 2.1 +/- 0.2 mM propionate), but power was lower (5.2 +/- 0.4 W/m(3)). Power was increased by operating the reactor in continuous flow mode at a hydraulic retention time of 20 h (20 +/- 1 W/m(3)), with 66 +/- 1% chemical oxygen demand removal. These results demonstrate that electricity generation is sustained over a cycle primarily by stored substrate and intermediates formed by fermentation and that the intermediates produced vary with xylose loading.  相似文献   

12.
《Process Biochemistry》2014,49(6):973-980
The pseudo-capacitive behaviour of a high surface area carbon veil electrode in a tubular microbial fuel cell (MFC) was investigated as a mechanism to enhance power quality and energy efficiency. Accumulated charge and energy from the anodic biofilm after prolonged open circuit times (1–120 min) were compared against equivalent periods of steady state loading (R = 100–3000 Ω). A significant difference in the amount of accumulated charge with different loads was observed, resulting in 1.051 C (R = 100 Ω) compared to 0.006 C (R = 3 kΩ). The automated application of short open and closed circuit (0.5–10 s) cycles resulted in an increase of power/current production (closed circuit alone), but presented lower efficiency considering entire open and closed period. The cumulative charge on the carbon veil electrode with biofilm was 39,807 C m−2 at 100 Ω. Electrochemical Impedance Spectroscopy (EIS) showed that the Helmholtz layer presented a double layer capacitance of more than ten times the biofilm on electrode. The results indicate that the capacitive behaviour could be utilized to increase the power quality, i.e. its availability/applicability with respect to the operation of low power consuming devices.  相似文献   

13.
A biodiesel wastewater treatment technology was investigated for neutral alkalinity and COD removal by microbial fuel cell. An upflow bio-filter circuit (UBFC), a kind of biocatalyst MFC was renovated and reinvented. The developed system was combined with a pre-fermented (PF) and an influent adjusted (IA) procedure. The optimal conditions were operated with an organic loading rate (OLR) of 30.0 g COD/L-day, hydraulic retention time (HRT) of 1.04 day, maintained at pH level 6.5-7.5 and aerated at 2.0 L/min. An external resistance of circuit was set at 10 k?. The purposed process could improve the quality of the raw wastewater and obtained high efficiency of COD removal of 15.0 g COD/L-day. Moreover, the cost of UBFC system was only US$1775.7/m3 and the total power consumption was 0.152 kW/kg treated COD. The overall advantages of this invention are suitable for biodiesel wastewater treatment.  相似文献   

14.
To reduce the amount of phosphate buffer currently used in Microbial Fuel Cell's (MFC's), we investigated the role of biological nitrification at the cathode in the absence of phosphate buffer. The addition of a nitrifying mixed consortia (NMC) to the cathode compartment and increasing ammonium concentration in the catholyte resulted in an increase of cell voltage from 0.3 V to 0.567 V (external resistance of 100 Ω) and a decrease of catholyte pH from 8.8 to 7.05. A large fraction of ammonium was oxidized to nitrite, as indicated by an increase of nitrate-nitrogen (NO3–N). An MFC inoculated with an NMC and supplied with 94.2 mgN/l ammonium to the catholyte could generate a maximum power of 2.1 ± 0.14 mW (10.94 ± 0.73 W/m3). This compared favorably to an MFC supplied with either buffered or non-buffered solution. The buffer-free NMC inoculated cathodic chamber showed the smallest polarization resistance, suggesting that nitrification resulted in improved cathode performance. The improved performances of the phosphate buffer-free cathode and cell are positively related to biological nitrification, in which we suggest additional protons produced from ammonium oxidation facilitated electrochemical reduction of oxygen at cathode.  相似文献   

15.
Liu Z  Liu J  Zhang S  Xing XH  Su Z 《Bioresource technology》2011,102(22):10221-10229
A wall-jet microbial fuel cell (MFC) was developed for the monitoring of anaerobic digestion (AD). This biofilm based MFC biosensor had a character of being portable, short hydraulic retention time (HRT) for sample flow through and convenient for continuous operation. The MFC was installed in the recirculation loop of an upflow anaerobic fixed-bed (UAFB) reactor in bench-scale where pH of the fermentation broth and biogas flow were monitored in real time. External disturbances to the AD were added on purpose by changing feedstock concentration, as well as process configuration. MFC signals had good correlations with online measurements (i.e. pH, gas flow rate) and offline analysis (i.e. COD) over 6-month operation. These results suggest that the MFC signal can reflect the dynamic variation of AD and can potentially be a valuable tool for monitoring and control of bioprocess.  相似文献   

16.
Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938 mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707 mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface.  相似文献   

17.
The occurrence of biofouling in MFC can cause severe problems such as hindering proton transfer and increasing the ohmic and charge transfer resistance of cathodes, which results in a rapid decline in performance of MFC. This is one of the main reasons why scaling-up of MFCs has not yet been successfully accomplished. The present review article is a wide-ranging attempt to provide insights to the biofouling mechanisms on surfaces of MFC, mainly on proton exchange membranes and cathodes, and their effects on performance of MFC based on theoretical and practical evidence. Various biofouling mitigation techniques for membranes are discussed, including preparation of antifouling composite membranes, modification of the physical and chemical properties of existing membranes, and coating with antifouling agents. For cathodes of MFC, use of Ag nanoparticles, Ag-based composite nanoparticles, and antifouling chemicals is outlined in considerable detail. Finally, prospective techniques for mitigation of biofouling are discussed, which have not been given much previous attention in the field of MFC research. This article will help to enhance understanding of the severity of biofouling issues in MFCs and provides up-to-date solutions. It will be beneficial for scientific communities for further strengthening MFC research and will also help in progressing this cutting-edge technology to scale-up, using the most efficient methods as described here.  相似文献   

18.
Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Omega, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Omega, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria.  相似文献   

19.
The performance of a microbial fuel cell (MFC) was investigated at different temperatures and anodic media. A lag phase of 30 h occurred at 30 degrees C which was half that at room temperature (22 degrees C). The maximum power density at 30 degrees C was 70 mW/m(2) and at 22 degrees C was 43 mW/m(2). At 15 degrees C, no successful operation was observed even after several loadings for a long period of operation. Maximum power density of 320 mW/m(2) was obtained with wastewater medium containing phosphate buffer (conductivity: 11.8 mS/cm), which was approx. 4 times higher than the value without phosphate additions (2.89 mS/cm).  相似文献   

20.
Coulombic efficiency and stability of electricity output are crucial for practical applications of microbial fuel cells (MFCs). In this study, a cell immobilization method for electrogenic microorganism in MFCs using graphite/alginate granules is developed. The MFC with immobilized cell granules delivered a much more stable electricity output than that with suspension cells, and resulted in a ~0.8 to 1.7 times improvement on coulombic efficiency compared to the suspension mode. Impressively, with the conductive graphite/alginate/cells granules, the internal resistance of the MFC decreased dramatically. Moreover, the cell immobilized MFC showed a much higher tolerance to the shock of high salt concentration than the MFC with suspension cells. The results substantiated that immobilization of electrogenic microorganism for MFCs could be achieved by the method developed here, and it is promising for practical application in energy harvesting from wastewater by MFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号