共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production 总被引:5,自引:0,他引:5
T. MutandaD. Ramesh S. KarthikeyanS. Kumari A. AnandrajF. Bux 《Bioresource technology》2011,102(1):57-70
Global petroleum reserves are shrinking at a fast pace, increasing the demand for alternate fuels. Microalgae have the ability to grow rapidly, and synthesize and accumulate large amounts (approximately 20-50% of dry weight) of neutral lipid stored in cytosolic lipid bodies. A successful and economically viable algae based biofuel industry mainly depends on the selection of appropriate algal strains. The main focus of bioprospecting for microalgae is to identify unique high lipid producing microalgae from different habitats. Indigenous species of microalgae with high lipid yields are especially valuable in the biofuel industry. Isolation, purification and identification of natural microalgal assemblages using conventional techniques is generally time consuming. However, the recent use of micromanipulation as a rapid isolating tool allows for a higher screening throughput. The appropriate media and growth conditions are also important for successful microalgal proliferation. Environmental parameters recorded at the sampling site are necessary to optimize in vitro growth. Identification of species generally requires a combination of morphological and genetic characterization. The selected microalgal strains are grown in upscale systems such as raceway ponds or photobireactors for biomass and lipid production. This paper reviews the recent methodologies adopted for site selection, sampling, strain selection and identification, optimization of cultural conditions for superior lipid yield for biofuel production. Energy generation routes of microalgal lipids and biomass are discussed in detail. 相似文献
2.
Closed photobioreactors for production of microalgal biomasses 总被引:1,自引:0,他引:1
Microalgal biomasses have been produced industrially for a long history for application in a variety of different fields. Most recently, microalgae are established as the most promising species for biofuel production and CO(2) bio-sequestration owing to their high photosynthesis efficiency. Nevertheless, design of photobioreactors that maximize solar energy capture and conversion has been one of the major challenges in commercial microalga biomass production. In this review, we systematically survey the recent developments in this field. 相似文献
3.
Hiroshi Hisano Rangaraj Nandakumar Zeng-Yu Wang 《In vitro cellular & developmental biology. Plant》2009,45(3):306-313
The energy in cellulosic biomass largely resides in plant cell walls. Cellulosic biomass is more difficult than starch to
break down into sugars because of the presence of lignin and the complex structure of cell walls. Transgenic down-regulation
of major lignin genes led to reduced lignin content, increased dry matter degradability, and improved accessibility of cellulases
for cellulose degradation. This review provides background information on lignin biosynthesis and focuses on genetic manipulation
of lignin genes in important monocot species as well as the dicot potential biofuel crop alfalfa. Reduction of lignin in biofuel
crops by genetic engineering is likely one of the most effective ways of reducing costs associated with pretreatment and hydrolysis
of cellulosic feedstocks, although some potential fitness issues should also be addressed. 相似文献
4.
H.M. El-Nashaar S.M. Griffith J.J. Steiner G.M. Banowetz 《Bioresource technology》2009,100(14):3526-3531
Stands of native grasses along roadways, in buffer strips, riparian zones and grass prairies have potential utility as feedstock for bioenergy production. The sustainability of harvesting these stands is reliant, in part, on knowledge of the mineral concentration of the harvested grasses because removal of mineral nutrients such as phosphorus (P) and potassium (K) can impact subsequent biomass production and ecosystem services associated with these stands. Mineral content of biomass, particularly that of silicon (Si), chlorine (Cl), and sulfur (S) also impacts thermochemical conversion approaches that convert grasses into bioproducts. This study quantified Cl, S, Si, P and K in Bromus marginatus, Elymus glaucus, Poa secunda, Pseudoroegneria, Elymus lanceolatus, Elymus trachycaulus, Leymus cinereus, Leymus triticoides, and Pseudoroegneria spicata collected at three growth developmental stages from four plant introduction stations located in the western US. Differences (P ? 0.05) in mineral concentrations were associated with developmental stage, species, and location. Variability was greatest in Si concentrations which ranged from 1847 to 28620 mg kg−1, similar to those recorded in other grasses. Variability in Cl and S concentrations also occurred, but at less magnitude than that of Si. Concentrations of P and K, two mineral fertilizer components, varied approximately threefold among these grasses. Differences in mineral concentrations among these grasses were not completely dependent upon soil mineral content. Long-term evaluations of available soil mineral concentrations under contrasting management practices are needed to quantify how local conditions impact mineral cycling, and in turn, the sustainability of harvesting these stands. The data presented here establish baselines for these species in locations subject to contrasting environmental and microbiological conditions that affect mineral cycling and availability. 相似文献
5.
Microalgae are considered as a promising resource for biodiesel. Nevertheless, their commercial exploitation necessitates considerable impetus towards the development of approaches for increased biomass and lipid production. The present work elucidates the impact of exogenously supplemented auxins, i.e., indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and indole-3-propionic acid (IPA) and cytokinins, i.e., benzylaminopurine (BAP) and thidiazuron (TDZ) on biomass, lipid content and fatty acid profile of Desmodesmus sp. JS07. Among auxins, IBA improved the biomass and lipid content up to 1.96 ± 0.11 g/L and 34.88 ± 3.87 %, respectively while BAP among cytokinins increased the biomass and lipid content up to 1.88 ± 0.061 g/L and 31.84 ± 1.33 % respectively. Further, the cumulative impact of IBA (10 mg/L) and BAP (5 mg/L) resulted in their synergistic effect by stimulating biomass and lipid content up to 2.34 ± 0.032 g/L and 42.43 ± 1.88 % respectively. Auxins stimulated the superoxide dismutase activity, and cytokinins increased the enzymes (catalase and ascorbate peroxidase), scavenging reactive oxidative species, thereby regulating ROS homeostasis in microalgae. A significant alteration in the fatty acid profile owing to the type and dosage of phytohormones was detected. Hence, the strategy employing phytohormones could prove to be a meaningful approach for biofuel production. 相似文献
6.
While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today’s fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO2 addition, species control, control of grazers and parasites and bioflocculation are discussed. 相似文献
7.
For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of algal biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices. 相似文献
8.
N. Abdel-Raouf A.A. Al-Homaidan I.B.M. Ibraheem 《Saudi Journal of Biological Sciences》2012,19(3):257-275
Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. 相似文献
9.
微藻被认为是一种有潜力的、可被开发为再生能源的重要生物材料。一些微藻种类具有较强的异养和混养能力,能直接利用有机物作为碳源。工农业生产和城市生活中所排放的废水中通常含有大量的有机碳、氮、磷等营养物质。利用废水培养微藻,一方面可以将废水中的碳、氮、磷等营养物质转化为具有更高价值的微藻生物质,另一方面又可实现废水的净化和营养物质的再利用。本综述了不同种类废水的特点,讨论了两类微藻培养模式的优劣,同时还探讨了微藻对营养元素的利用,并总结了微藻培养需突破的瓶颈。 相似文献
10.
Graciela S. Diniz Anita F. Silva Ofelia Q. F. Araújo Ricardo M. Chaloub 《Journal of applied phycology》2017,29(2):821-832
The utilization of microalgae for wastewater treatment represents an attractive opportunity for wastewater valorization through the use of the produced biomass. Five strains of microalgae were isolated from municipal wastewater and grown in autoclaved and non-autoclaved effluent at 30 °C and 150 μmol photons m?2 s?1 to study biomass production, nutrient removal, and the biochemical composition of the biomass. All strains reached high biomass productivity (35.6 to 54.2 mg dry weight L?1 day?1) within 4 days of batch culturing. In this period, ammonium-N and phosphate were reduced by more than 60 and 90 %, respectively. The high growth rate (0.57 to 1.06 day?1) ensured a rapid removal of nutrients and thereby a short retention time. By the fourth day of cultivation, the algal biomass contained 32 % protein, but only 11 % lipids and 18 % carbohydrates. It was found that the biomass was a suitable raw material for biogas production by anaerobic digestion. Biodigestion of obtained biomass was simulated by employing the Aspen HYSYS modeling software, resulting in methane yields comparable to those found in the literature. The elemental analysis of the algal biomass showed very low concentrations of pollutants, demonstrating the potential of use of the digestate from biodigestion as a bio-fertilizer. 相似文献
11.
微藻生物质制备燃料乙醇关键技术研究进展 总被引:1,自引:0,他引:1
燃料乙醇作为一种优良的可再生液体燃料,其开发利用受到了人们的广泛关注。微藻是一种高光合、高产生物量的生物质资源,很多的藻体细胞中含有大量的淀粉、纤维素(Iα型)等多糖物质,是制备燃料乙醇的优良原料。发展利用微藻制备燃料乙醇技术工艺,对于缓解我国目前日益短缺的能源问题,减少温室气体排放和环境污染等具有很好的应用前景。综述了国内外利用微藻生物质制备燃料乙醇中所用到的关键技术、存在的问题以及今后的发展前景等。 相似文献
12.
Microalgae are now the focus of intensive research due to their potential as a renewable feedstock for biodiesel. This research requires a thorough understanding of the biochemistry and genetics of these organisms’ lipid-biosynthesis pathways. Genes encoding lipid-biosynthesis enzymes can now be identified in the genomes of various eukaryotic microalgae. However, an examination of the predicted proteins at the biochemical and molecular levels is mandatory to verify their function. The essential molecular and genetic tools are now available for a comprehensive characterization of genes coding for enzymes of the lipid-biosynthesis pathways in some algal species. This review mainly summarizes the novel information emerging from recently obtained algal gene identification. 相似文献
13.
Potential of biofilm-based biofuel production 总被引:1,自引:0,他引:1
Biofilm technology has been extensively applied to wastewater treatment, but its potential application in biofuel production has not been explored. Current technologies of converting lignocellulose materials to biofuel are hampered by costly processing steps in pretreatment, saccharification, and product recovery. Biofilms may have a potential to improve efficiency of these processes. Advantages of biofilms include concentration of cell-associated hydrolytic enzymes at the biofilm–substrate interface to increase reaction rates, a layered microbial structure in which multiple species may sequentially convert complex substrates and coferment hexose and pentose as hydrolysates diffuse outward, and the possibility of fungal–bacterial symbioses that allow simultaneous delignification and saccharification. More importantly, the confined microenvironment within a biofilm selectively rewards cells with better phenotypes conferred from intercellular gene or signal exchange, a process which is absent in suspended cultures. The immobilized property of biofilm, especially when affixed to a membrane, simplifies the separation of biofuel from its producer and promotes retention of biomass for continued reaction in the fermenter. Highly consolidated bioprocessing, including delignification, saccharification, fermentation, and separation in a single reactor, may be possible through the application of biofilm technology. To date, solid-state fermentation is the only biofuel process to which the advantages of biofilms have been applied, even though it has received limited attention and improvements. The transfer of biofilm technology from environmental engineering has the potential to spur great innovations in the optimization of biofuel production. 相似文献
14.
Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production 总被引:2,自引:0,他引:2
Mass cultivation of microalgae for biofuel production depends heavily on the performance of the microalgae strains used. In this study, 60 algae-like microorganisms collected from different sampling sites in Minnesota were examined using multi-step screening and acclimation procedures to select high-lipid producing facultative heterotrophic microalgae strains capable of growing on concentrated municipal wastewater (CMW) for simultaneous energy crop production and wastewater treatment. Twenty-seven facultative heterotrophic microalgae strains were found, among which 17 strains were proved to be tolerant to CMW. These 17 top-performing strains were identified through morphological observation and DNA sequencing as Chlorella sp., Heynigia sp., Hindakia sp., Micractinium sp., and Scenedesmus sp. Five strains were chosen for other studies because of their ability to adapt to CMW, high growth rates (0.455-0.498 d−1) and higher lipid productivities (74.5-77.8 mg L−1 d−1). These strains are considered highly promising compared with other strains reported in the literature. 相似文献
15.
Microalgae are considered as the most promising renewable feedstock for biofuel production and biorefineries, due to their advantages of fast growth, efficient carbon dioxide fixation, not competing for arable lands and potable water, and potentially accumulating high amounts of lipids and carbohydrates. Since carbohydrates in microalgae biomass are mainly cellulose in the cell wall and starch in the plastids without lignin and low hemicelluloses contents, they can be readily converted into fermentable sugars. However, to date there are very few studies focusing on the use of microalgae-based carbohydrates for biofuel production, which requires more understanding and knowledge to support the technical feasibility of this next-generation feedstock. This review article elucidates comprehensive information on the characteristics and metabolism of main fermentable microalgal carbohydrates (e.g., starch and cellulose), as well as the key factors and challenges that should be addressed during production and saccharification of microalgal carbohydrates. Furthermore, developments on the utilization of microalgae-based feedstock in producing liquid and gaseous biofuels are summarized. The objective of this article is to provide useful knowledge and information with regard to biochemistry, bioprocess engineering, and commercial applications to assist in the viable technology development of for biofuels generation from microalgae-based carbohydrates. 相似文献
16.
Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production 总被引:1,自引:0,他引:1
High rate algal ponds (HRAPs) are shallow, paddlewheel-mixed open raceway ponds that are an efficient and cost-effective upgrade for the conventional wastewater treatment ponds used by communities and farms the world over. HRAPs provide improved natural disinfection and nutrient removal and can be further enhanced by carbon dioxide (CO2) addition to promote algal growth which is often carbon limited. This paper discusses the construction and operation of a 5-ha demonstration HRAP system treating primary settled wastewater at the Christchurch wastewater treatment plant, New Zealand. The system consisted of four 1.25-ha HRAPs that were constructed from an existing conventional pond. Algae were harvested from the HRAP effluent in specially designed settlers, which concentrated the algal/bacterial biomass to 1–2% organic solids for conversion to bio-crude oil following dewatering. Performance data from the first 15?months of HRAP operation (without CO2 addition) are presented. The four demonstration HRAPs had reasonable replication of both treatment performance and algal/bacterial productivity with similar annual average wastewater treatment efficiency (~50% removal of BOD5, ~87% removal of fBOD5, ~65% removal of ammoniacal-N, ~19% removal of dissolved reactive phosphorus and ~2 log removal of Escherichia coli), algal species composition and algal/bacterial biomass production (~8?g?m?2?day ?1 volatile suspended solids). These results were in good agreement with the results for pilot-scale HRAP without CO2 addition in New Zealand. This study provides further indication of the potential for energy efficient and effective wastewater treatment using HRAP, while biofuel conversion of the harvested algal bacterial biomass could provide a valuable niche distributed energy source for local communities. 相似文献
17.
Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production. 相似文献
18.
Du Z Li Y Wang X Wan Y Chen Q Wang C Lin X Liu Y Chen P Ruan R 《Bioresource technology》2011,102(7):4890-4896
The pyrolysis of Chlorella sp. was carried out in a microwave oven with char as microwave reception enhancer. The results indicated that the maximum bio-oil yield of 28.6% was achieved under the microwave power of 750 W. The bio-oil properties were characterized with elemental, GC-MS, GPC, FTIR, and thermogravimetric analysis. The algal bio-oil had a density of 0.98 kg/L, a viscosity of 61.2 cSt, and a higher heating value (HHV) of 30.7 MJ/kg. The GC-MS results showed that the bio-oils were mainly composed of aliphatic hydrocarbons, aromatic hydrocarbons, phenols, long chain fatty acids and nitrogenated compounds, among which aliphatic and aromatic hydrocarbons (account for 22.18% of the total GC-MS spectrum area) are highly desirable compounds as those in crude oil, gasoline and diesel. The results in this study indicate that fast growing algae are a promising source of feedstock for advanced renewable fuel production via microwave-assisted pyrolysis (MAP). 相似文献
19.
《Process Biochemistry》2014,49(9):1383-1392
Ketchup is highly viscous and contains high concentrations of carbohydrates. These properties make waste ketchup more costly to treat prior to disposal. In this study ketchup was used to grow Ochromonas danica, a phagotrophic microalga that can produce and accumulate intracellular lipids using soluble or particulate organic substrates. Effects of the following factors on high-density O. danica fermentation were evaluated: nitrogen source, pH, temperature, agitation speed, aeration method, dissolved oxygen concentration, and nutrient feeding strategy. Under the optimized conditions the alga grew with a doubling time of about 10 h. Cell yield and intracellular lipid yield from the consumed ketchup carbohydrate were 40% and 18%, respectively. The intracellular lipid content could be raised to 40%. The developed process may also be applied to effectively convert other organic wastes to algal lipids, for use as, e.g., biofuel feedstock. 相似文献
20.
Lieve M.L. Laurens Stefanie Van Wychen Jordan P. McAllister Sarah Arrowsmith Thomas A. Dempster John McGowen Philip T. Pienkos 《Analytical biochemistry》2014
Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently. 相似文献