首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand ligand-induced structural transitions in cytochrome P450 2B4, protein-ligand interactions were investigated using a bulky inhibitor. Bifonazole, a broad spectrum antifungal agent, inhibits monooxygenase activity and induces a type II binding spectrum in 2B4dH(H226Y), a modified enzyme previously crystallized in the presence of 4-(4-chlorophenyl)imidazole (CPI). Isothermal titration calorimetry and tryptophan fluorescence quenching indicate no significant burial of protein apolar surface nor altered accessibility of Trp-121 upon bifonazole binding, in contrast to recent results with CPI. A 2.3 A crystal structure of 2B4-bifonazole reveals a novel open conformation with ligand bound in the active site, which is significantly different from either the U-shaped cleft of ligand-free 2B4 or the small active site pocket of 2B4-CPI. The O-shaped active site cleft of 2B4-bifonazole is widely open in the middle but narrow at the top. A bifonazole molecule occupies the bottom of the active site cleft, where helix I is bent approximately 15 degrees to accommodate the bulky ligand. The structure also defines unanticipated interactions between helix C residues and bifonazole, suggesting an important role of helix C in azole recognition by mammalian P450s. Comparison of the ligand-free 2B4 structure, the 2B4-CPI structure, and the 2B4-bifonazole structure identifies structurally plastic regions that undergo correlated conformational changes in response to ligand binding. The most plastic regions are putative membrane-binding motifs involved in substrate access or substrate binding. The results allow us to model the membrane-associated state of P450 and provide insight into how lipophilic substrates access the buried active site.  相似文献   

2.
Recent x-ray structures of cytochrome P450 2B4 (CYP2B4) reveal an open form that undergoes a large-scale structural transition to a closed form upon binding to 4-(4-chlorophenyl)imidazole (4-CPI). Here, we report for the first time a complete solution thermodynamic study using isothermal titration calorimetry supported by spectroscopic studies to elucidate the conformational flexibility of CYP2B4 in binding imidazole inhibitors with different ring chemistry and side chains: 4-CPI, 1-benzylimidazole (1-BI), 1-CPI, 4-phenylimidazole (4-PI), 1-(2-(benzyloxy)ethyl)imidazole (BEI), and 1-PI. Each of the inhibitors induced type II spectral changes, and IC50 values for enzyme inhibition ranged from 0.1 to 2.4 microM, following the order 1-BI < 4-CPI < 1-CPI < 4-PI < BEI < 1-PI. Calorimetric titrations using monomeric enzyme yielded a 1:1 binding stoichiometry, with the associated KD values ranging from 0.3 to 4.8 microM and following the same rank order as the IC50 values. Changes in enthalpy at 25 degrees C ranged from -6.5 to -8.8 kcal mol(-1). The largest difference in binding entropy (+5.9 versus -4.1 cal mol(-1) K(-1)) was observed between 4-CPI and BEI, respectively, with a 2-fold difference in heat capacity changes (-604 versus -331 cal mol(-1) K(-1)), which is inferred to result from the reduction of apolar surface area of the enzyme ensuing from a conformational change upon 4-CPI binding. Accessibility to acrylamide of the only tryptophan (Trp121), which is located in helix C, was greatly decreased only in protein bound to 4-CPI. Steric restrictions hindered the perfect docking of only BEI to the closed conformation of the enzyme. The thermodynamic signature obtained for structurally similar inhibitors suggests remarkable plasticity of CYP2B4.  相似文献   

3.
The crystal structure of P450 2B4 bound with 1-(4-chlorophenyl)imidazole (1-CPI) has been determined to delineate the structural basis for the observed differences in binding affinity and thermodynamics relative to 4-(4-chlorophenyl)imidazole (4-CPI). Compared with the previously reported 4-CPI complex, there is a shift in the 1-CPI complex of the protein backbone in helices F and I, repositioning the side chains of Phe-206, Phe-297, and Glu-301, and leading to significant reshaping of the active site. Phe-206 and Phe-297 exchange positions, with Phe-206 becoming a ligand-contact residue, while Glu-301, rather than hydrogen bonding to the ligand, flips away from the active site and interacts with His-172. As a result the active site volume expands from 200 A3 in the 4-CPI complex to 280 A3 in the 1-CPI complex. Based on the two structures, it was predicted that a Phe-206-->Ala substitution would alter 1-CPI but not 4-CPI binding. Isothermal titration calorimetry experiments indicated that this substitution had no effect on the thermodynamic signature of 4-CPI binding to 2B4. In contrast, relative to wild-type 1-CPI binding to F206A showed significantly less favorable entropy but more favorable enthalpy. This result is consistent with loss of the aromatic side chain and possible ordering of water molecules, now able to interact with Glu-301 and exposed residues in the I-helix. Hence, thermodynamic measurements support the active site rearrangement observed in the crystal structure of the 1-CPI complex and illustrate the malleability of the active site with the fine-tuning of residue orientations and thermodynamic signatures.  相似文献   

4.
Residues located outside the active site of cytochromes P450 2B have exhibited importance in ligand binding, structural stability and drug metabolism. However, contributions of non-active-site residues to the plasticity of these enzymes are not known. Thus, a systematic investigation was undertaken of unique residue-residue interactions found in crystal structures of P450 2B4 in complex with 4-(4-chlorophenyl)imidazole (4-CPI), a closed conformation, or in complex with bifonazole, an expanded conformation. Nineteen mutants distributed over 11 sites were constructed, expressed in Escherichia coli and purified. Most mutants showed significantly decreased expression, especially in the case of interactions found in the 4-CPI structure. Six mutants (H172A, H172F, H172Q, L437A, E474D and E474Q) were chosen for detailed functional analysis. Among these, the K(s) of H172F for bifonazole was ~ 20 times higher than for wild-type 2B4, and the K(s) of L437A for 4-CPI was ~ 50 times higher than for wild-type, leading to significantly altered inhibitor selectivity. Enzyme function was tested with the substrates 7-ethoxy-4-(trifluoromethyl)coumarin, 7-methoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin (7-BR). H172F was inactive with all three substrates, and L437A did not turn over 7-BR. Furthermore, H172A, H172Q, E474D and E474Q showed large changes in k(cat)/K(M) for each of the three substrates, in some cases up to 50-fold. Concurrent molecular dynamics simulations yielded distances between some of the residues in these putative interaction pairs that are not consistent with contact. The results indicate that small changes in the protein scaffold lead to large differences in solution behavior and enzyme function.  相似文献   

5.
A 1.9-A molecular structure of the microsomal cytochrome P450 2B4 with the specific inhibitor 4-(4-chlorophenyl)imidazole (CPI) in the active site was determined by x-ray crystallography. In contrast to the previous experimentally determined 2B4 structure, this complex adopted a closed conformation similar to that observed for the mammalian 2C enzymes. The differences between the open and closed structures of 2B4 were primarily limited to the lid domain of helices F through G, helices B' and C, the N terminus of helix I, and the beta(4) region. These large-scale conformational changes were generally due to the relocation of conserved structural elements toward each other with remarkably little remodeling at the secondary structure level. For example, the F' and G' helices were maintained with a sharp turn between them but are placed to form the exterior ceiling of the active site in the CPI complex. CPI was closely surrounded by residues from substrate recognition sites 1, 4, 5, and 6 to form a small, isolated hydrophobic cavity. The switch from open to closed conformation dramatically relocated helix C to a more proximal position. As a result, heme binding interactions were altered, and the putative NADPH-cytochrome P450 reductase binding site was reformed. This suggests a structural mechanism whereby ligand-induced conformational changes may coordinate catalytic activity. Comparison of the 2B4/CPI complex with the open 2B4 structure yields insights into the dynamics involved in substrate access, tight inhibitor binding, and coordination of substrate and redox partner binding.  相似文献   

6.
Administration of 4, 4′dipyridyl to rats induces the activities of xenobiotic transferases (phase II drug metabolizing enzymes), UDP-glucuronosyl-tranferase and glutathione-S-transferase, and also the concentration and activity of cytochrome P450 (a phase I drug metabolizing enzyme). 2, 2′Dipyridyl, an isomer possessing iron chelation properties, only induces the phase II enzymes. Although the magnitude of the phase II induction by 2, 2′dipyridyl increases with increasing dosages, the selective induction of only phase II activities remains inviolate. Co-administration of 2, 2′dipyridyl does not prevent 4, 4′dipyridyl from inducing cytochrome P450, suggesting that the iron chelation property is not the factor that precludes 2, 2′dipyridyl from coordinately inducing cytochrome P450 with the transferases.  相似文献   

7.
Structural plasticity of mammalian cytochromes P450 (CYP) has recently been explored in our laboratory and elsewhere to understand the ligand-binding promiscuity. CYP2B4 exhibits very different conformations and thermodynamic signatures in binding the small inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) versus the large bifonazole. Using four key active-site mutants (F296A, T302A, I363A, and V367L) that are involved in binding one or both inhibitors, we dissected the thermodynamic basis for the ability of CYP2B4 to bind substrates and inhibitors of different sizes and chemistry. In all cases, 1:1 binding stoichiometry was observed. The inhibitors 4-CPI, 1-(4-chlorophenyl)imidazole, and 1-(2-(benzyloxy)ethyl)imidazole bind to the mutants with a free energy difference (ΔΔG) of ∼ 0.5 to 1 kcal/mol compared with the wild type but with a large entropy-enthalpy compensation of up to 50 kcal/mol. The substrate testosterone binds to all four mutants with a ΔΔG of ∼ 0.5 kcal/mol but with as much as 40 kcal/mol of entropy-enthalpy compensation. In contrast, benzphetamine binding to V367L and F296A is accompanied by a ΔΔG of ∼ 1.5 and 3 kcal/mol, respectively. F296A, I363A, and V367L exhibit very different benzphetamine metabolite profiles, indicating the different substrate-binding orientations in the active site of each mutant. Overall, the findings indicate that malleability of the active site allows mammalian P450s to exhibit a high degree of thermodynamic fidelity in ligand binding.  相似文献   

8.
The correlation between enzyme induction and cell proliferation caused by inducers of xenobiotic metabolizing enzymes was studied using a cell culture expressing a constitutive level of cytochrome P450 (hepatoma McA RH 7777) and a cell culture in which cytochrome P450 was absent (hepatoma 27). In hepatoma 27 cells, the inducers did not induce the synthesis of xenobiotic metabolizing enzymes but stimulated cell proliferation. Thus, the processes of signal transduction for enzyme induction and for cell proliferation by the inducers are different.  相似文献   

9.
Active enkephalin and related peptide hormones or neurotransmitters are generated by proteolytic processing of inactive prohormone precursors. Little is known about the relative accessibilities of prohormone cleavage sites and conformations of subdomains that undergo proteolytic processing. Therefore, this study investigated the conformational features of the prohormone proenkephalin (PE) by rapid hydrogen-deuterium exchange mass spectrometry (DXMS). DXMS analyzes rates of hydrogen exchange of the polypeptide backbone of PE with deuterium from D(2) O (heavy water) by mass spectrometry, accomplished at sub-second and multisecond time periods. Results showed differential accessibilities of cleavage sites and adjacent subdomains of PE to the aqueous environment. Importantly, protease cleavage sites of PE with greater relative accessibilities correspond to sites most readily cleaved by processing proteases to generate active peptide neurotransmitters. For comparison, peptides derived from PE (by pepsin digestion) displayed greater accessibility to the solvent environment, illustrated by their higher rates of H-D exchange compared to that of intact PE protein. The more limited H-D exchange accessibilities of PE protein, compared to peptides derived from PE, indicate that PE possesses tertiary conformation. These results demonstrate that differential tertiary conformations of PE subdomains undergo ordered proteolytic processing to generate active enkephalin peptides for cell-cell communication in the nervous and endocrine systems.  相似文献   

10.
CYP130 is one of the 20 Mycobacterium tuberculosis cytochrome P450 enzymes, only two of which, CYP51 and CYP121, have so far been studied as individually expressed proteins. Here we characterize a third heterologously expressed M. tuberculosis cytochrome P450, CYP130, by UV-visible spectroscopy, isothermal titration calorimetry, and x-ray crystallography, including determination of the crystal structures of ligand-free and econazole-bound CYP130 at a resolution of 1.46 and 3.0A(,) respectively. Ligand-free CYP130 crystallizes in an "open" conformation as a monomer, whereas the econazole-bound form crystallizes in a "closed" conformation as a dimer. Conformational changes enabling the "open-closed" transition involve repositioning of the BC-loop and the F and G helices that envelop the inhibitor in the binding site and reshape the protein surface. Crystal structure analysis shows that the portion of the BC-loop relocates as much as 18A between the open and closed conformations. Binding of econazole to CYP130 involves a conformational change and is mediated by both a set of hydrophobic interactions with amino acid residues in the active site and coordination of the heme iron. CYP130 also binds miconazole with virtually the same binding affinity as econazole and clotrimazole and ketoconazole with somewhat lower affinities, which makes it a plausible target for this class of therapeutic drugs. Overall, binding of the azole inhibitors is a sequential two-step, entropy-driven endothermic process. Binding of econazole and clotrimazole exhibits positive cooperativity that may reflect a propensity of CYP130 to associate into a dimeric structure.  相似文献   

11.
Two catalytic domains, bearing FMN and FAD cofactors, joined by a connecting domain, compose the core of the NADPH cytochrome P450 reductase (CPR). The FMN domain of CPR mediates electron shuttling from the FAD domain to cytochromes P450. Together, both enzymes form the main mixed‐function oxidase system that participates in the metabolism of endo‐ and xenobiotic compounds in mammals. Available CPR structures show a closed conformation, with the two cofactors in tight proximity, which is consistent with FAD‐to‐FMN, but not FMN‐to‐P450, electron transfer. Here, we report the 2.5 Å resolution crystal structure of a functionally competent yeast–human chimeric CPR in an open conformation, compatible with FMN‐to‐P450 electron transfer. Comparison with closed structures shows a major conformational change separating the FMN and FAD cofactors from 86 Å.  相似文献   

12.
Based on the X-ray crystal structures of 4-(4-chlorophenyl)imidazole (4-CPI)- and bifonazole (BIF)-bound P450 2B4, eight active site mutants at six positions were created in an N-terminal modified construct termed 2B4dH and characterized for enzyme inhibition and catalysis. I363A showed a >4-fold decrease in differential inhibition by BIF and 4-CPI (IC(50,BIF)/IC(50,4-CPI)). F296A, T302A, I363A, V367A, and V477A showed a 2-fold decreased k(cat) for 7-ethoxy-4-trifluoromethylcoumarin O-deethylation, whereas V367A and V477F showed an altered K(m). T302A, V367L, and V477A showed >4-fold decrease in total testosterone hydroxylation, whereas I363A, V367A, and V477F showed altered stereo- and regioselectivity. Interestingly, I363A showed a 150-fold enhanced k(cat)/K(m) with testosterone, and yielded a new metabolite. Furthermore, testosterone docking into three-dimensional models of selected mutants based on the 4-CPI-bound structure suggested a re-positioning of residues 363 and 477 to yield products. In conclusion, our results suggest that the 4-CPI-bound 2B4dH/H226Y crystal structure is an appropriate model for predicting enzyme catalysis.  相似文献   

13.
Characterization of xenobiotic metabolizing cytochrome P450s (P450s) was carried out in rat brain microsomes using the specific substrates, 7-pentoxy- and 7-ethoxyresorufin (PR and ER), metabolized in the liver by P450 2B1/2B2 and 1A1/1A2 respectively and 7-benzyloxyresorufin (BR), a substrate for both the isoenzymes. Brain microsomes catalysed the O-dealkylation of PR, BR and ER in the presence of NADPH. The ability to dealkylate alkoxyresorufins varied in different regions of the brain. Microsomes from the olfactory lobes exhibited maximum pentoxyresorufin-O-dealkylase (PROD), benzyloxyresorufin-O-dealkylase (BROD) and ethoxyresorufin-O-dealkylase (EROD) activities. The dealkylation was found to be inducer selective. While pretreatment with phenobarbital (PB; 80 mg/kg; i.p. × 5 days) resulted in significant induction in PROD (3-4 fold) and BROD (4-5 fold) activities, 3-methylcholanthrene (MC; 30 mg/kg; i.p. × 5 days) had no effect on the activity of PROD and only a slight effect on that of BROD (1.4 fold). MC pretreatment significantly induced the activity of EROD (3 fold) while PB had no effect on it. Kinetic studies have shown that this increase in the activities following pretreatment with P450 inducers was associated with a significant increase in the velocity of the reaction (Vmax) of O-dealkylation. In vitro studies using organic inhibitors and antibodies have further provided evidence that the O-dealkylation of alkoxyresorufins is isoenzyme specific. While in vitro addition of a-naphthoflavone (ANF), an inhibitor of P450 1A1/1A2 catalysed reactions and antibody for hepatic P450 1A1/1A2 isoenzymes produced a concentration-dependent inhibition of EROD activity, metyrapone, an inhibitor of P450 2B1/2B2 and antibody for hepatic P450 2B1/2B2 significantly inhibited the activity of PROD and BROD in vitro. The data suggest that, as in the case of liver, dealkylation of alkoxyresorufins can be used as a biochemical tool to characterise the xenobiotic metabolising P450s and substrate selectivity of P450 isoenzymes in rat brain microsomes.  相似文献   

14.
1-Citronellyl-5-phenyl imidazole (1,5-CPI), 1-citronellyl-4-phenyl imidazole (1,4-CPI) and 1-citronellyl-2-phenyl imidazole (1,2-CPI) were tested as inhibitors of JH-III biosynthesis in vitro. 1,5-CPI was found to be most active followed by 1,2-CPI. The least active isomer was 1,4-CPI. Inhibition of JH biosynthesis by 1,5-CPI resulted in no significant accumulation of the epoxidation substrate methyl farnesoate, and piperonyl butoxide, a known microsomal epoxidase inhibitor, produced only a slight increase in methyl farnesoate. Topical application of fluoromevalonolactone resulted in reduced biosynthetic capability of subsequently excised corpora allata.  相似文献   

15.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

16.
Microsomal cytochrome P450 family 1 enzymes play prominent roles in xenobiotic detoxication and procarcinogen activation. P450 1A2 is the principal cytochrome P450 family 1 enzyme expressed in human liver and participates extensively in drug oxidations. This enzyme is also of great importance in the bioactivation of mutagens, including the N-hydroxylation of arylamines. P450-catalyzed reactions involve a wide range of substrates, and this versatility is reflected in a structural diversity evident in the active sites of available P450 structures. Here, we present the structure of human P450 1A2 in complex with the inhibitor alpha-naphthoflavone, determined to a resolution of 1.95 A. alpha-Naphthoflavone is bound in the active site above the distal surface of the heme prosthetic group. The structure reveals a compact, closed active site cavity that is highly adapted for the positioning and oxidation of relatively large, planar substrates. This unique topology is clearly distinct from known active site architectures of P450 family 2 and 3 enzymes and demonstrates how P450 family 1 enzymes have evolved to catalyze efficiently polycyclic aromatic hydrocarbon oxidation. This report provides the first structure of a microsomal P450 from family 1 and offers a template to study further structure-function relationships of alternative substrates and other cytochrome P450 family 1 members.  相似文献   

17.
It was shown that noncovalent complexes of riboflavins and cytochrome P450 2B4 (flavocytochrome P450 2B4) can be used for photoinduced intramolecular electron transfer between the isoalloxazine cycle of flavins and the cytochrome P450 2B4 heme. The measurement of the photocurrent generated by photoreduction of noncovalent flavocytochrome P450 2B4 was carried out. It was found that, in the presence of typical substrates for cytochromes P450, the cathode photocurrent generated by both riboflavin and a mixture of riboflavin with cytochrome P450 decreases. A comparison of photocurrents in the presence and absence of substrates enabled one to register xenobiotics in solutions and use the photosensitivity of artificial flavocytochrome P450 for the determination of xenobiotic concentration. It was demonstrated that artificial flavocytochromes may serve as molecular amplifiers of the photocurrent generated upon the reduction of flavins. The introduction of flavin residues into the cytochrome P450 molecule transformed this hemoprotein into a photoreceptor and a photodiod and, in addition, into a photoactivated enzyme.  相似文献   

18.
Human aromatase (CYP19A1) is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site. As H/D exchange kinetics followed by FTIR spectroscopy can provide information on the conformational changes in proteins where solvent accessibility is affected, here the amide I region was used to measure the exchange rates of the different elements of the secondary structure for aromatase in the ligand-free form and in the presence of the substrate androstenedione and the inhibitor anastrozole. Biphasic exponential functions were found to fit the H/D exchange data collected as a function of time. Two exchange rates were assigned to two populations of protons present in different flexible regions of the protein. The addition of the substrate androstenedione and the inhibitor anastrozole lowers the H/D exchange rates of the α-helices of the enzyme when compared to the ligand-free form. Furthermore, the presence of the inhibitor anastrozole lowers exchange rate constant (k1) for β-sheets from 0.22±0.06 min−1 for the inhibitor-bound enzyme to 0.12±0.02 min−1 for the free protein. Dynamics effects localised in helix F were studied by time resolved fluorescence. The data demonstrate that the fluorescence lifetime component associated to Trp224 emission undergoes a shift toward longer lifetimes (from ≈5.0 to ≈5.5 ns) when the substrate or the inhibitor are present, suggesting slower dynamics in the presence of ligands. Together the results are consistent with different degrees of flexibility of the access channel and therefore different conformations adopted by the enzyme in the free, substrate- and inhibitor-bound forms.  相似文献   

19.
The interactions between the hemoprotein cytochrome P450 2B4 (CYP 2B4) and riboflavin - a low molecular weight component of the flavoprotein NADPH-dependent cytochrome P450 reductase - were investigated by fluorescence spectroscopy. Riboflavin fluorescence quenching by cytochrome P450 2B4 was used to probe the ligand-enzyme binding (lambda(ex)=385 nm, lambda(em)=520 nm). Fluorescence titration experiments showed formation of a complex between cytochrome P450 2B4 and riboflavin with an apparent dissociation constant value, K(d)=8.8+/-1 microM. The fluorescence intensity of riboflavin was decreased with increasing the cytochrome P450 2B4 concentration, indicating the transfer of resonance excitation energy from riboflavin (energy donor) to the cytochrome P450 2B4 heme (energy acceptor). The data obtained are suggestive of the existence of riboflavin binding site(s) on the hemeprotein molecule.  相似文献   

20.
Using a multiple alignment of 175 cytochrome P450 (CYP) family 2 sequences, 20 conserved sequence motifs (CSMs) were identified with the program PCPMer. Functional importance of the CSM in CYP2B enzymes was assessed from available data on site-directed mutants and genetic variants. These analyses suggested an important role of the CSM 8, which corresponds to(187)RFDYKD(192) in CYP2B4. Further analysis showed that residues 187, 188, 190, and 192 have a very high rank order of conservation compared with 189 and 191. Therefore, eight mutants (R187A, R187K, F188A, D189A, Y190A, K191A, D192A, and a negative control K186A) were made in an N-terminal truncated and modified form of CYP2B4 with an internal mutation, which is termed 2B4dH/H226Y. Function was examined with the substrates 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC), 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and testosterone and with the inhibitors 4-(4-chlorophenyl)imidazole (4-CPI) and bifonazole (BIF). Compared with the template and K186A, the mutants R187A, R187K, F188A, Y190A, and D192A showed > or =2-fold altered substrate specificity, k(cat), K(m), and/or k(cat)/K(m) for 7-MFC and 7-EFC and 3- to 6-fold decreases in differential inhibition (IC(50,BIF)/IC(50,4-CPI)). Subsequently, these mutants displayed 5-12 degrees C decreases in thermal stability (T(m)) and 2-8 degrees C decreases in catalytic tolerance to temperature (T(50)) compared with the template and K186A. Furthermore, when R187A and D192A were introduced in CYP2B1dH, the P450 expression and thermal stability were decreased. In addition, R187A showed increased activity with 7-EFC and decreased IC(50,BIF)/IC(50,4-CPI) compared with 2B1dH. Analysis of long range residue-residue interactions in the CYP2B4 crystal structures indicated strong hydrogen bonds involving Glu(149)-Asn(177)-Arg(187)-Tyr(190) and Asp(192)-Val(194), which were significantly-reduced/abolished by the Arg(187)-->Ala and Asp(192)-->Alasubstitutions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号