首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding underlying physiological differences between the sexes in circulating androgens and how hormonal variation affects morphology–performance relationships may help clarify the evolution of sexual dimorphism in diverse taxa. Using a widely distributed Australian lizard (Eulamprus quoyii) with weak sexual dimorphism and no dichromatism, we tested whether circulating androgens differed between the sexes and whether they covaried with morphological and performance traits (bite force, sprint speed, endurance). Males had larger head dimensions, stronger bite force, faster sprint speed, and longer endurance compared to females. We found that the sexes did not differ in androgen concentrations and that androgens were weakly associated with both morphological and performance traits. Interestingly, high circulating androgens showed a nonlinear relationship with bite force in males and not females, with this relationship possibly being related to alternative male reproductive tactics. Our results suggest that androgens are not strongly correlated with most performance and morphological traits, although they may play an important organizational role during the development of morphological traits, which could explain the differences in morphology and thus performance between the sexes. Differences in performance between the sexes suggest differential selection on these functional traits between males and females. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 834–849.  相似文献   

2.
Although differential selective pressures on males and females of the same species may result in sex‐specific evolutionary trajectories, comparative studies of adaptive radiations have largely neglected within‐species variation. In this study, we explore the potential effects of natural selection, sexual selection, or a combination of both, on bite performance in males and females of 19 species of Liolaemus lizards. More specifically, we study the evolution of bite performance, and compare evolutionary relationships between the variation in head morphology, bite performance, ecological variation and sexual dimorphism between males and females. Our results suggest that in male Liolaemus, the variation in bite force is at least partly explained by the variation in the degree of sexual dimorphism in head width (i.e. our estimate of the intensity of sexual selection), and neither bite force nor the morphological variables were correlated with diet (i.e. our proxy for natural selection). On the contrary, in females, the variation in bite force and head size can, to a certain extent, be explained by variation in diet. These results suggest that whereas in males, sexual selection seems to be operating on bite performance, in the case of females, natural selection seems to be the most likely and most important selective pressure driving the variation in head size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 461–475.  相似文献   

3.
Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal’s foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal’s performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance.  相似文献   

4.
Within populations, individual animals may vary considerably in morphology and ecology. The degree to which variation in morphology is related to ecological variation within a population remains largely unexplored. We investigated whether variation in body size and shape among sexes and age classes of the lizard Podarcis melisellensis translates in differential whole-animal performance (sprint speed, bite force), escape and prey attack behaviour in the field, microhabitat use and diet. Male and female adult lizards differed significantly in body size and head and limb proportions. These morphological differences were reflected in differences in bite strength, but not in sprint speed. Accordingly, field measurements of escape behaviour and prey attack speed did not differ between the sexes, but males ate larger, harder and faster prey than females. In addition to differences in body size, juveniles diverged from adults in relative limb and head dimensions. These shape differences may explain the relatively high sprint and bite capacities of juvenile lizards. Ontogenetic variation in morphology and performance is strongly reflected in the behaviour and ecology in the field, with juveniles differing from adults in aspects of their microhabitat use, escape behaviour and diet.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 251–264.  相似文献   

5.
Deciphering the mechanisms that underlie morphological and functional diversity is essential for understanding how organisms adapt to their environment. Interestingly, phenotypic divergence does not necessarily correspond to the geographic and genetic separation between populations. Here, we explored the morphological and functional divergence among populations of two genetically differentiated clades of the Moorish gecko, Tarentola mauritanica. We used linear and geometric morphometrics to quantify morphological variation and investigated how it translates into biting and CLIMBING PERFORMANCE, to better understand the mechanisms potentially underlying population and lineage divergence. We found marked morphological differences between clades, both in body size and head shape. However, much of this differentiation is more strongly related to local variation between populations of the same clade, suggesting that recent ecological events may be more influential than deep evolutionary history in shaping diversity patterns in this group. Despite a lack of association between morphology and functional diversification in the locomotor system of the Moorish gecko, straightforward links are observed between head morphology and biting performance, providing more hints on the possible underlying causes. Indeed, variation in bite force is mostly determined by size variation and sexual dimorphism, and differences between the two clades concern how sexual variation is expressed, reinforcing the idea that both social and ecological factors contribute in shaping differentiation. Interestingly, the individuals from the islets off the coast of Murcia exhibit particular morphological and functional traits, which suggests that the ecological conditions related to insularity may drive the phenotypic differentiation of this population.  相似文献   

6.
Inter and intra-population variation in morphological traits, such as body size and shape, provides important insights into the ecological importance of individual natural populations. The radiation of Diaptomid species (~400 species) has apparently produced little morphological differentiation other than those in secondary sexual characteristics, suggesting sexual, rather than ecological, selection has driven speciation. This evolutionary history suggests that species, and conspecific populations, would be ecologically redundant but recent work found contrasting ecosystem effects among both species and populations. This study provides the first quantification of shape variation among species, populations, and/or sexes (beyond taxonomic illustrations and body size measurements) to gain insight into the ecological differentiation of Diaptomids. Here we quantify the shape of five Diaptomid species (family Diaptomidae) from four populations each, using morphometric landmarks on the prosome, urosome, and antennae. We partition morphological variation among species, populations, and sexes, and test for phenotype-by-environment correlations to reveal possible functional consequences of shape variation. We found that intraspecific variation was 18-35% as large as interspecific variation across all measured traits. Interspecific variation in body size and relative antennae length, the two traits showing significant sexual dimorphism, were correlated with lake size and geographic location suggesting some niche differentiation between species. Observed relationships between intraspecific morphological variation and the environment suggest that divergent selection in contrasting lakes might contribute to shape differences among local populations, but confirming this requires further analyses. Our results show that although Diaptomid species differ in their reproductive traits, they also differ in other morphological traits that might indicate ecological differences among species and populations.  相似文献   

7.
Island environments differ with regard to numerous features from the mainland and may induce large‐scale changes in most aspects of the biology of an organism. In this study, we explore the effect of insularity on the morphology and performance of the feeding apparatus, a system crucial for the survival of organisms. To this end, we examined the head morphology and feeding ecology of island and mainland populations of the Balkan green lizard, Lacerta trilineata. We predicted that head morphology, performance and diet composition would differ between sexes and habitats as a result of varying sexual and natural selection pressures. We employed geometric morphometrics to test for differences in head morphology, measured bite forces and analysed the diet of 154 adult lizards. Morphological analyses revealed significant differences between sexes and also between mainland and island populations. Relative to females, males had larger heads, a stronger bite and consumed harder prey than females. Moreover, island lizards differed in head shape, but not in head size, and, in the case of males, demonstrated a higher bite force. Islanders had a wider food niche breadth and included more plant material in their diet. Our findings suggest that insularity influences feeding ecology and, through selection on bite force, head morphology. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 469–484.  相似文献   

8.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   

9.
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex‐specific adaptation. How competition‐driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade‐wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.  相似文献   

10.
The Common Chuckwalla [ Sauromalus ater (=  obesus )] is a large, sexually dimorphic lizard with a flattened head that takes refuge from predators in rock crevices. Males use their relatively large heads to bite competing males during territorial fights and to restrain females during copulation. Flattened heads with an antipredator function (i.e. seeking refuge in crevices) and enlarged heads with intrasexual competition and reproductive functions suggest possible antagonism between selective pressures on head morphology in males. To examine this hypothesis, we performed a morphometric analysis and measured the bite-force performance of 49 adult chuckwallas. Males had disproportionately wider heads than females, but did not have deeper heads. Males bit with nearly four times the force of females, consistent with the notion of sexual selection for high bite force in males. Although constrained by crevice-wedging behaviour, head depth was a good predictor of bite force in both sexes. In males, however, osteological head width also was a good predictor of bite force. These results are consistent with the hypothesis that head shape in males is under antagonistic selective pressures, which may partly explain the pattern of head shape dimorphism. The disproportionately wide head of males may reflect anatomical modifications to enhance bite force in response to sexual selection in spite of presumed constraints on head shape for crevice-wedging behaviour  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 215–222.  相似文献   

11.
Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. J. Morphol. 275:1016–1026, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Sexual dimorphisms in body size and head size are common among lizards and are often related to sexual selection on male fighting capacity (organismal performance) and territory defence. However, whether this is generally true or restricted to lizards remains untested. Here we provide data on body and head size, bite performance and indicators of mating success in the tuatara (Sphenodon punctatus), the closest living relative to squamates, to explore the generality of these patterns. First, we test whether male and female tuatara are dimorphic in head dimensions and bite force, independent of body size. Next, we explore which traits best predict bite force capacity in males and females. Finally, we test whether male bite force is correlated with male mating success in a free‐ranging population of tuatara (Sphenodon punctatus). Our data confirm that tuatara are indeed dimorphic in head shape, with males having bigger heads and higher bite forces than females. Across all individuals, head length and the jaw closing in‐lever are the best predictors of bite force. In addition, our data show that males that are mated have higher absolute but not relative bite forces. Bite force was also significantly correlated to condition in males but not females. Whereas these data suggest that bite force may be under sexual selection in tuatara, they also indicate that body size may be the key trait under selection in contrast to what is observed in squamates that defend territories or resources by biting. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 287–292.  相似文献   

13.
It has been documented extensively that body size affects the physiology and musculoskeletal function of organisms. However, less well understood is how body size affects the ecology of organisms through its effects on physiology and performance. We explored the effects of body size on morphology and performance in different ontogenetic classes and sexes of a common Anolis lizard ( A. lineatopus ). Next, we tested whether these morphological and performance differences may affect functional aspects of the diet such as prey size and prey hardness. Our data showed that males, females and juveniles differ significantly in head size, head shape and bite force. Multiple regression models indicated that head shape and bite force are significantly correlated to prey size and hardness. Yet juveniles had relatively large heads and bit disproportionately hard for their size, allowing them to eat prey as large as those of females. However, for a given prey size, males and females ate more robust prey than did juveniles. Additionally, males ate relatively harder prey than did juveniles. These data suggest that: (1) body size affects the dietary ecology of animals through its effect on head size and bite force; (2) changes in head morphology independent of changes in overall size also have important effects on performance and diet.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 443–454.  相似文献   

14.
An organism's phenotype is to some extent influenced by costs and benefits in terms of natural and sexual selection. The intensity of natural selection can in part be driven by habitat structure, which may result in varying levels of crypsis and/or selection on traits related to maximizing performance in that habitat. This may be countered by sexual selection, which can lead to sexual dimorphism in body size and/or the expression of conspicuous ornamentation relating to maximizing reproductive success. The intensity of these forces can also be different between the sexes, resulting in complex patterns of phenotypic variation. With this in mind, we examined morphological variation within the Cape Dwarf Chameleon, Bradypodion pumilum. The species inhabits two geographically disjunct habitat types and, in the present study, we demonstrate that chameleons from the two habitats show morphological differences. Large, conspicuous individuals inhabit closed vegetation, whereas small, drab individuals inhabit open vegetation. However, when morphological traits are size‐adjusted, the open vegetation morph displays many traits that are larger for its body size than the closed vegetation morph, especially for characters related to locomotion (limbs) and bite force (head width). Sexual dimorphism is also present, although the degree and number of dimorphic characters was very different between the two morphs, with size‐adjusted male‐biased dimorphism much more pronounced in the closed morph. Overall, our findings suggest that natural selection in open habitats limits both body size and conspicuous characters, although sexual selection in closed habitats favours the development of ornamentation related to display. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 878–888.  相似文献   

15.
Sexual dimorphism in body size and shape in animals is normally linked to sexual selection mechanisms that modify the morphological properties of each sex. However, sexual dimorphism of ecologically relevant traits may be amplified by natural selection and result in the ecological segregation of both sexes. In the present study, we investigated patterns of sexual dimorphism of morphological traits relevant for locomotion in two lacertid lizards, Podarcis bocagei and Podarcis carbonelli, aiming to identify ontogenetic sources of variation. We analysed trunk and limb variation in relation to total body size, as well as the covariation of different traits, aiming to shed light on the proximate causation of adult sexual dimorphism. We find that, although immatures are generally monomorphic, adult females have a longer trunk, and adult males have longer fore and hind limbs. Both sexes differ substantially with respect to their growth trajectories and relationships between traits, whereas, in some cases, there are signs of morphological constraints delimiting the observed patterns. Because of the direct connection between limb size/shape and locomotor performance, which is relevant both for habitat use and escape from predators, the observed patterns of sexual dimorphism are expected to translate into ecological differences between both sexes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 530–543.  相似文献   

16.
1. Two often cited hypotheses explaining sexual head size dimorphism in lizards are: sexual selection acting on structures important in intrasexual competition, and reduction of intersexual competition through food niche separation.
2. In this study some implicit assumptions of the latter hypothesis were tested, namely that an increase in gape distance and bite force should accompany the observed increase in head size. These assumptions are tested by recording bite forces, in vivo , for lizards of the species Gallotia galloti . In this species, male lizards have significantly larger heads than female conspecifics of similar snout–vent length.
3. Additionally, the average force needed to crush several potential prey species was determined experimentally and compared with the bite force data. This comparison clearly illustrates that animals of both sexes can bite much harder than required for most insect food items, which does not support the niche divergence hypothesis. The apparent 'excess' bite force in both sexes might be related to the partially herbivorous diet of the animals.
4. To unravel the origin of differences between sexes in bite capacity, the crushing phase of biting was modelled. The results of this model show different strategies in allocation of muscle tissue between both sexes. The origin of this difference is discussed and a possible evolutionary pathway of the development of the sexual dimorphism in the species is provided.  相似文献   

17.
A key assumption in ecomorphological studies is that morphology–function relationships are invariant due to underlying biomechanical principles. We tested the hypothesis that morphology–performance relationships are invariant across different seasons by examining how a key performance trait, bite force, and two aspects of morphology (head shape and dewlap size) changed seasonally in the field and in the laboratory in the green anole lizard Anolis carolinensis . We found that not only did bite force change seasonally (up to 80% within the same individual), but relationships between morphology and bite force are highly plastic. Of the three traits examined (bite force, head shape, and dewlap area), only head shape did not change seasonally. We noted opposing trends for how bite force and dewlap area changed seasonally; whereas dewlap areas were large in the spring, and small in the winter, bite forces were low in the spring and high in the winter. This pattern occurred because of a tradeoff at the individual level: individuals in the spring with large dewlaps and high bite forces diminish their dewlaps (but not bite force), whereas individuals with small dewlaps and low bite forces in the spring increase their bite forces (but not dewlap size). We also show that this trend was apparent both in the field (comparing different individuals) and the laboratory (comparing the same set of individuals under standardized conditions). Finally, seasonal changes were not consistent among individuals for either bite force or dewlap area, as individuals changed seasonally in proportion to their initial state. These findings cast doubt on the widely held view of invariant morphology–performance relationships, and offer a cautionary note for eco-morphological studies.  相似文献   

18.
咬合力作为衡量动物生存能力的重要指标,可以在一定程度上反映动物捕食、反捕食和争夺配偶的能力。对于蜥蜴类动物而言,头部形态和咬合力大小之间常呈现显著线性关系。通过测量2018年7月采集于新疆霍城县图开沙漠的24号草原蜥(Trapelussanguinolenta)(雌13,雄11)的头部形态指标,并使用薄膜压力测试仪测定咬合力,采用单因素方差分析(ANOVA)、主成分分析、模型拟合及逐步回归4种方法探究草原蜥咬合力的两性差异及其与头部形态指标的关系。结果表明,草原蜥头体长、头长、头宽、头高、口宽和下颌长在两性个体间均无显著差异,草原蜥两性个体之间咬合力也没有显著差异。主成分分析及赤池信息模型拟合结果均显示,头长、头宽和下颌长是影响草原蜥咬合力的重要因素,逐步回归分析揭示草原蜥的咬合力主要受头宽影响。上述研究结果表明,草原蜥的咬合力受头部形态大小的影响,但两性个体之间咬合力却不存在显著差异,这与头部形态特征未表现出两性差异一致,这可能是草原蜥对灌丛生活的适应,具体而言,是头部大小与运动权衡的结果。  相似文献   

19.
本研究以黑眶蟾蜍(Duttaphrynus melanostictus)为研究对象,通过对比黑眶蟾蜍抱对个体的体长、头长、头宽、眼间距、鼓膜径、耳后腺长、眼径、前臂及手长、前肢长以及后肢长等形态特征,分析雌性黑眶蟾蜍繁殖输出与其体型的关系,探究黑眶蟾蜍两性异形模式及其与雌性生育力的关系;同时通过对配对个体形态学特征的相关性分析探究了黑眶蟾蜍的配对模式。结果表明,黑眶蟾蜍雌性体长和体重显著大于雄体;两性的所有局部形态特征均与体长成正相关;去除体长因素影响后,雄性头长以及后肢长均明显大于雌性,其余局部形态特征两性间则皆无显著差异。雌体的窝卵重、窝卵数均与其体长和体重成正相关关系。雌性成体的前肢长与抱对雄性成体的前肢长之间呈显著正相关,其余形态特征两性间均无相关性。研究表明,生育力选择是导致黑眶蟾蜍两性异形的重要驱动力;黑眶蟾蜍的选型配对模式未表现在个体大小上,而是体现在局部特征(前肢长),这不仅为揭示两栖类配对模式的普遍性提供了参考,还表明对两栖类选型配对的研究应以多个性状为对象。  相似文献   

20.
In many species of lizards, males attain greater body size and have larger heads than female lizards of the same size. Often, the dimorphism in head size is paralleled by a dimorphism in bite force. However, the underlying functional morphological basis for the dimorphism in bite force remains unclear. Here, we test whether males are larger, and have larger heads and bite forces than females for a given body size in a large sample of Anolis carolinensis . Next, we test if overall head shape differs between the sexes, or if instead specific aspects of skull shape can explain differences in bite force. Our results show that A. carolinensis is indeed dimorphic in body and head size and that males bite harder than females. Geometric morphometric analyses show distinct differences in skull shape between males and females, principally reflecting an enlargement of the jaw adductor muscle chamber. Jaw adductor muscle mass data confirm this result and show that males have larger jaw adductors (but not jaw openers) for a given body and head size. Thus, the observed dimorphism in bite force in A. carolinensis is not merely the result of an increase in head size, but involves distinct morphological changes in skull structure and the associated jaw adductor musculature.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 111–119.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号