首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Behavioral shifts can initiate morphological evolution by pushing lineages into new adaptive zones. This has primarily been examined in ecological behaviors, such as foraging, but social behaviors may also alter morphology. Swallows and martins (Hirundinidae) are aerial insectivores that exhibit a range of social behaviors, from solitary to colonial breeding and foraging. Using a well‐resolved phylogenetic tree, a database of social behaviors, and morphological measurements, we ask how shifts from solitary to social breeding and foraging have affected morphological evolution in the Hirundinidae. Using a threshold model of discrete state evolution, we find that shifts in both breeding and foraging social behavior are common across the phylogeny of swallows. Solitary swallows have highly variable morphology, while social swallows show much less absolute variance in all morphological traits. Metrics of convergence based on both the trajectory of social lineages through morphospace and the overall morphological distance between social species scaled by their phylogenetic distance indicate strong convergence in social swallows, especially socially foraging swallows. Smaller physical traits generally observed in social species suggest that social species benefit from a distinctive flight style, likely increasing maneuverability and foraging success and reducing in‐flight collisions within large flocks. These results highlight the importance of sociality in species evolution, a link that had previously been examined only in eusocial insects and primates.  相似文献   

3.
4.
Chimpanzees (Pan troglodytes) often groom in gatherings that cannot simply be divided into unilateral dyadic grooming interactions. This feature of grooming is studied at two different levels: grooming cliques and grooming clusters. Grooming cliques are defined as directly connected configurations of grooming interactions at any given moment, and when any member of a clique successively grooms any member of another clique within 5min and within a distance of 3m, all the members of both cliques are defined as being in the same grooming cluster. Twenty-seven types of cliques are observed, with the largest one consisting of seven individuals. Mutual and/or polyadic cliques account for more than 25% of all cliques. The size of grooming clusters varies from two to 23 individuals, and almost 70% of the grooming time is spent in polyadic clusters. Although adult males groom the longest in relatively smaller clusters (size=2-4), adult females groomed the longest in clusters of five or more individuals. A review of the literature implies that mutual and polyadic cliques occur less often in other primate species than in chimpanzees. The importance of overlapping interactions for these kinds of gatherings and its possible significance in the evolution of sociality is discussed in this article.  相似文献   

5.
The Stenogastrinae are a subfamily of the Vespidae. The main difference between these and other social wasps (Polistinae and Vespinae) is a jelly-like substance that the Stenogastrinae secrete from the Dufour 's gland and use in many functions of their biology. It is suggested that this substance greatly contributed to the evolution of social life in these wasps by making it possible to nourish the brood with liquid food and store it in the nest, thus favoring also the evolution of the behavioral mechanisms which facilitated interactions between adults. Social organization of the colonies may have been kept at a low level through a basic system of continuous temporary helper replacement, while the evolution of large colonies was restrained, as well as by the poor quality of construction material, low egg-laying capacity and limited production of abdominal substance, imperfect social regulatory mechanisms, and the absence of defensive mechanisms of the colonies against large predators.  相似文献   

6.
High levels of synonymous substitutions among alleles of the surface antigen SerH led to the hypothesis that Tetrahymena thermophila has a tremendously large effective population size, one that is greater than estimated for many prokaryotes (Lynch, M., and J. S. Conery. 2003. Science 302:1401-1404.). Here we show that SerH is unusual as there are substantially lower levels of synonymous variation at five additional loci (four nuclear and one mitochondrial) characterized from T. thermophila populations. Hence, the effective population size of T. thermophila, a model single-celled eukaryote, is lower and more consistent with estimates from other microbial eukaryotes. Moreover, reanalysis of SerH polymorphism data indicates that this protein evolves through a combination of vertical transmission of alleles and concerted evolution of repeat units within alleles. SerH may be under balancing selection due to a mechanism analogous to the maintenance of antigenic variation in vertebrate immune systems. Finally, the dual nature of ciliate genomes and particularly the amitotic divisions of processed macronuclear genomes may make it difficult to estimate accurately effective population size from synonymous polymorphisms. This is because selection and drift operate on processed chromosomes in macronuclei, where assortment of alleles, disruption of linkage groups, and recombination can alter the genetic landscape relative to more canonical eukaryotic genomes.  相似文献   

7.
The transition from solitary life to sociality is considered one of the major transitions in evolution. In primates, this transition is currently not well understood. Traditional verbal models appear insufficient to unravel the complex interplay of environmental and demographic factors involved in the evolution of primate sociality, and recent phylogenetic reconstructions have produced conflicting results. We therefore analyze a theoretical model for the evolution of female social philopatry that sheds new light on the question why most primates live in groups. In individual-based simulations, we study the evolution of dispersal strategies of both resident females and their offspring. The model reveals that social philopatry can evolve through kin selection, even if retention of offspring is costly in terms of within-group resource competition and provides no direct benefits. Our model supports the role of predator avoidance as a selective pressure for group-living in primates, but it also suggests that a second benefit of group-living, communal resource defense, might be required to trigger the evolution of sizable groups. Lastly, our model reveals that seemingly small differences in demographic parameters can have profound effects on primate social evolution.  相似文献   

8.
Arbovirus infection increases with group size   总被引:1,自引:0,他引:1  
Buggy Creek (BCR) virus is an arthropod-borne alphavirus that is naturally transmitted to its vertebrate host the cliff swallow (Petrochelidon pyrrhonota) by an invertebrate vector, namely the cimicid swallow bug (Oeciacus vicarius). We examined how the prevalence of the virus varied with the group size of both its vector and host. The study was conducted in southwestern Nebraska where cliff swallows breed in colonies ranging from one to 3700 nests and the bug populations at a site vary directly with the cliff swallow colony size. The percentage of cliff swallow nests containing bugs infected with BCR virus increased significantly with colony size at a site in the current year and at the site in the previous year. This result could not be explained by differences in the bug sampling methods, date of sampling, sample size of the bugs, age structure of the bugs or the presence of an alternate host, the house sparrow (Passer domesticus). Colony sites that were reused by cliff swallows showed a positive autocorrelation in the percentage of nests with infected bugs between year t and year t+1, but the spatial autocorrelation broke down for year t+2. The increased prevalence of BCR virus at larger cliff swallow colonies probably reflects the larger bug populations there, which are less likely to decline in size and lead to virus extinction. To the authors' knowledge this is the first demonstration of arbovirus infection increasing with group size and one of the few known predictive ecological relationships between an arbovirus and its vectors/hosts. The results have implications for both understanding the fitness consequences of coloniality for cliff swallows and understanding the temporal and spatial variation in arboviral epidemics.  相似文献   

9.
Metriorhynchids were a peculiar group of fully marine Mesozoic crocodylomorphs, some of which reached large body size and were probably apex predators. The estimation of their total body length in the past has proven problematic. Rigorous size estimation was provided using five complete metriorhynchid specimens, by means of regression equations derived from basicranial and femoral length against total body length. The use of the Alligator femoral regression equation as a proxy to estimate metriorhynchid total body length led to a slight underestimation, whereas cranial regression equations of extant genera resulted in an overestimation of body length. Therefore, the scaling of crania and femora to total body length of metriorhynchids is noticeably different from that of extant crocodylians, indicating that extant crocodylians are not ideal proxies for size reconstruction of extinct taxa that deviate from their semi‐aquatic morphotype. The lack of a correlation between maximum, minimum, or the range of generic body lengths with species richness demonstrates that species diversification is driven by factors other than just variation in body size. Maximum likelihood modelling also found no evidence for directionality in body size evolution. However, niche partitioning in Metriorhynchidae is mediated not only by craniodental differentiation, as shown by previous studies, but also by body size variation. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1199–1216.  相似文献   

10.
Flying fish wing area and wing-loading both rise in strongly negative allometric fashion with increasing body length and mass. Evidence is presented to show that this occurs because: (1) the leading edge of the pectoral fin 'wing' is fixed at 24% of standard length (  L S) from the snout, (2) the wing length cannot exceed 76% of L S or the tips will interfere with propulsive tail beat and (3) increased mass demands faster flying and wings with better lift : drag ratios; this selects for tapered, higher aspect ratio wing shapes. A consequence of this situation is that larger flying fishes have centres of mass increasingly further behind the centre of wing pressure. Resultant longitudinal instability restricts the maximum size of the two-winged design and the pelvic fins of four-wingers act as a stabilizing tailplane. These data indicate that the accepted model of evolution of flight in flying fishes (by extension of ballistic leaps) is flawed; it is proposed that evolution of lift-supported surface taxiing in half-beaks with enlarged pectoral fins (enhanced by ground effect) was an essential preliminary; subsequent forward migration of the centre of mass to within the wing chord permitted effective gliding.  相似文献   

11.
Human language is unique among the communication systems of the natural world: it is socially learned and, as a consequence of its recursively compositional structure, offers open-ended communicative potential. The structure of this communication system can be explained as a consequence of the evolution of the human biological capacity for language or the cultural evolution of language itself. We argue, supported by a formal model, that an explanatory account that involves some role for cultural evolution has profound implications for our understanding of the biological evolution of the language faculty: under a number of reasonable scenarios, cultural evolution can shield the language faculty from selection, such that strongly constraining language-specific learning biases are unlikely to evolve. We therefore argue that language is best seen as a consequence of cultural evolution in populations with a weak and/or domain-general language faculty.  相似文献   

12.
Cooperation and group living are extremely rare in spiders and only few species are known to be permanently social. Inbreeding is a key characteristic of social spiders, resulting in high degrees of within‐colony relatedness that may foster kin‐selected benefits of cooperation. Accordingly, philopatry and regular inbreeding are suggested to play a major role in the repeated independent origins of sociality in spiders. We conducted field observations and laboratory experiments to investigate the mating system of the subsocial spider Stegodyphus tentoriicola. The species is suggested to resemble the ‘missing link’ in the transition from subsociality to permanent sociality in Stegodyphus spiders because its social period is prolonged in comparison to other subsocial species. Individuals in our two study populations were spatially clustered around maternal nests, indicating that clusters consist of family groups as found in the subsocial congener Stegodyphus lineatus. Male mating dispersal was limited and we found no obvious pre‐copulatory inbreeding avoidance, suggesting a high likelihood of mating with close kin. Rates of polygamy were low, a pattern ensuring high relatedness within broods. In combination with ecological constraints, such as high costs of dispersal, our findings are consistent with the hypothesis that the extended social period in S. tentoriicola is accompanied with adaptations that facilitate the transition towards permanent sociality. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 851–859.  相似文献   

13.
Background and AimsLow atmospheric CO2 concentration depresses photosynthesis and resource use efficiency, and therefore can inhibit phases of the life cycle such as seedling establishment. Seed reserves can compensate for photosynthetic inhibition by accelerating seedling growth. We therefore hypothesize that seedlings arising from large seeds show less inhibition from low atmospheric CO2 than young plants from small seeds. Seed size effects on seedling responses to low CO2 may also be enhanced in warm environments, due to greater photorespiration at high temperature.Methods Phaseolus and Vigna seeds differing in mass by over two orders of magnitude were planted and grown for 14 d in growth chambers with CO2 concentrations of 370, 180 or 100 ppm, in thermal regimes of 25 °C/19 °C, 30 °C/24 °C or 35 °C/29 °C (day/night). We measured leaf area expansion, shoot growth and mortality of the seedlings arising from the variously sized seeds at 14 days after planting (14 DAP).Key ResultsRelative to small-seeded plants, large-seeded genotypes produced greater leaf area and shoot mass at 14 DAP across the range of CO2 treatments in the 25 °C/19 °C and 30 °C/24 °C regimes, and at 100 ppm in the 35 °C/29 °C treatment. The proportional decline in leaf area and seed mass with CO2 reduction was generally greater for seedlings arising from small than from large seeds. Reductions in leaf area due to CO2 reduction increased in the warmer temperature treatments. In the 35 °C/19 °C treatment at 100 ppm CO2, seedling mortality was greater in small- than in large-seeded genotypes, and the small-seeded genotypes were unable to exit the seedling stage by the end of the experiment.ConclusionsThe results support a hypothesis that seedlings from large seeds grow and establish better than seedlings from small seeds in warm, low CO2 environments. During low CO2 episodes in Earth’s history, such as the past 30 million years, large seeds may have been favoured by natural selection in warm environments. With the recent rise in atmospheric CO2 due to human activities, trade-offs between seed size and number may already be affected, such that seed size today may be non-optimal in their natural habitats.  相似文献   

14.
The adequacy and utility of behavioural characters in phylogenetics is widely acknowledged, especially for stereotyped behaviours. However, the most common behaviours are not stereotyped, and these are usually seen as inappropriate or more difficult to analyze in a phylogenetic context. A few methods have been proposed to deal with such data, although they have never been tested on samples larger than six species, which limits their evolutionary interest. In the present study, we perform behavioural observations on 13 cockroach species and derive behavioural phylogenetic characters with the successive event‐pairing method. We combine these characters with morphological and molecular data (approximately 6800 bp) in a phylogenetic study of 41 species. We then reconstruct ancestral states of the behavioural data to study evolution of social behaviour in these insects with regard to their social systems (i.e. solitary, gregarious, and subsocial) and diversity of habitat choice. We report for the first time that nonstereotyped behavioural data are adequate for phylogenetic analyses: they are no more homoplastic than traditional data, and support several phylogenetic relationships that we discuss. From an evolutionary perspective, we show that the solitary species Thanatophyllum akinetum does not display original behavioural interactions, suggesting phylogenetic inertia of interactive behaviours despite a radical change in social structure. Conversely, the subsocial species Parasphaeria boleiriana shows original behavioural interactions, which could result from its peculiar social system or habitat. We conclude that phylogenetic approaches in studies of behaviour are useful for deciphering evolution of behaviour and discriminating between its different modalities, even for nonstereotyped characters. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 58–77.  相似文献   

15.
Rapid evolution in response to strong selection, much of which is human-induced, has been indisputably documented. In this perspective, we suggest that adaptation may influence the effect size of treatments in ecological field experiments and alter our predictions of future dynamics in ecological systems. Field experiments often impose very strong and consistent selection over multiple generations. Focal populations may adapt to these treatments and, in the process, increase or decrease the magnitude of the treatment effect through time. We argue that how effect size changes through time will depend on the evolutionary history of the experimental population, the type of experimental manipulation, and the traits involved in adaptive responses. While no field study has conclusively demonstrated evolution in response to treatments with concomitant changes in ecological effect size, we present several examples that provide strong circumstantial evidence that such effects occur. We conclude with a consideration of the differences between plastic and genetic responses to treatments and discuss future research directions linking adaptation to ecological effect size.  相似文献   

16.
The evolution of soldier reproduction in social thrips   总被引:1,自引:0,他引:1  
We estimated the degree of reproductive differentiation betweenfoundresses and soldiers in multiple populations of five speciesof haplodiploid Australian gall-forming thrips using microsatellitedata, ovarian dissections, and census data. Microsatellite-basedspecies estimates of average per capita reproductive outputof soldiers relative to the foundresses ranged from 0.005 to0.64, and dissection and census-based estimates ranged from0.17 to 1.1. Mapping of these estimates onto a phylogeny showedthat levels of soldier reproduction were apparently higherin three basal lineages than in two more derived lineages.We infer from this phylogenetic pattern that soldier morphologyand behavior of thrips evolved in the presence of substantial levels of soldier reproduction. This pattern of evolutionarychange is similar to that proposed for the origin of soldiersin aphids and termites, but it differs from the scenario proposedfor the origin of workers in Hymenoptera, within which helpingand strong reproductive division of labor apparently evolvedbefore morphological differentiation. We suggest that this difference in evolutionary routes to eusociality between taxa with soldiersand taxa with foraging workers was driven by a weaker trade-offbetween helping and reproducing, and a greater ability of thehelpers to withstand reproductive domination, in taxa withsoldiers. This is the first study to analyze the social-evolutionarytrajectories of reproductive, behavioral, and morphologicaldifferentiation in the context of a species-level phylogeny.  相似文献   

17.
18.
Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language.  相似文献   

19.
Recent studies of reproductive skew have revealed great variationin the distribution of direct fitness among group members, yetthere have been surprisingly few attempts to explore the consequencesof such variation for stable group size, and none that takeinto account the future benefits of group membership to nonbreeders.This means that the existing theory is not suited to explainthe group size of most cooperatively breeding vertebrates andprimitively social insects in which group membership involvessubstantial future benefits. Here we model the group size ofsuch species as social queues in which nonbreeders can inherita breeding position if they outlive those ahead of them in thequeue. We demonstrate, however, that the results can be generalizedto systems in which inheritance occurs via scramble competition,rather than via a strict queue. The model predicts that stablegroup size will depend on the number of breeding positions inthe group and the mortality rates of breeders and nonbreeders,but not on the distribution of reproduction among the pool ofbreeders. This is because deaths occur at random, so that eachindividual has the same chance of surviving to reach each breedingposition. We tested a specific prediction of the model usingdata on ovarian development in the paper wasp, Polistes dominulus.We found a positive correlation between group size and the proportionof females with fully developed eggs, as predicted. Our resultsclarify the interaction between the dominance structure andsize of animal groups and add to the growing recognition ofthe potential for inheritance as a major determinant of bothindividual behavior and group-level characteristics of animalsocieties.  相似文献   

20.
Genetic relatedness and group size in an aggregation economy   总被引:3,自引:0,他引:3  
Summary We use Hamilton's Rule to investigate effects of genetic relatedness on the predicted size of social groups. We assume an aggregation economy; individual fitness initially increases with group size, but in sufficiently large groups each member's individual fitness declines with further increments in the size of the group. We model two processes of group formation, designated free entry and group-controlled entry. The first model assumes that solitary individuals decide to join groups or remain alone; group size equilibrates when solitaries no longer choose to join. The second model allows group members to regulate the size of the group, so that the predicted group size results from members' decisions to repel or accept intruding solitaries. Both the Nash equilibrium group size and any change in the equilibrium caused by varying the level of relatedness depend on the particular entry rule assumed. The largest equilibrium group size occurs when solitaries choose between joining or not joining and individuals are unrelated. Increasing genetic relatedness may reduce and can never increase, equilibrium group size when this entry rule applies. The smallest equilibrium group size occurs when group members choose between repelling or accepting intruders and individuals are unrelated. Under this entry rule, increasing genetic relatedness can increase and can never decrease, equilibrium group size. We extend the models' predictions to suggest when individuals should prefer kin vs non-kin as members of the same group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号