首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rao P  Yuan W  Krug RM 《The EMBO journal》2003,22(5):1188-1198
In viral cap-snatching, the endonuclease intrinsic to the viral polymerase cleaves cellular capped RNAs to generate capped fragments that are primers for viral mRNA synthesis. Here we demonstrate that the influenza viral polymerase, which is assembled in human cells using recombinant proteins, effectively uses only CA-terminated capped fragments as primers for viral mRNA synthesis in vitro. Thus we provide the first in vitro system that mirrors the cap-snatching process occurring in vivo during virus infection. Further, we demonstrate that when a capped RNA substrate contains a CA cleavage site, the functions of virion RNA (vRNA) differ from those previously described: the 5' terminal sequence of vRNA alone is sufficient for endonuclease activation, and the 3' terminal sequence of vRNA functions solely as a template for mRNA synthesis. Consequently, we are able to identify the vRNA sequences that are required for each of these two separable functions. We present a new model for the influenza virus cap-snatching mechanism, which we postulate is a paradigm for the cap-snatching mechanisms of other segmented, negative-strand and ambisense RNA viruses.  相似文献   

2.
3.
The genome of influenza A virus consists of eight single-strand negative-sense RNA segments, each comprised of a coding region and a noncoding region. The noncoding region of the NS segment is thought to provide the signal for packaging; however, we recently showed that the coding regions located at both ends of the hemagglutinin and neuraminidase segments were important for their incorporation into virions. In an effort to improve our understanding of the mechanism of influenza virus genome packaging, we sought to identify the regions of NS viral RNA (vRNA) that are required for its efficient incorporation into virions. Deletion analysis showed that the first 30 nucleotides of the 3' coding region are critical for efficient NS vRNA incorporation and that deletion of the 3' segment-specific noncoding region drastically reduces NS vRNA incorporation into virions. Furthermore, silent mutations in the first 30 nucleotides of the 3' NS coding region reduced the incorporation efficiency of the NS segment and affected virus replication. These results suggested that segment-specific noncoding regions together with adjacent coding regions (especially at the 3' end) form a structure that is required for efficient influenza A virus vRNA packaging.  相似文献   

4.
5.
The nucleocapsid (N) protein functions in hantavirus replication through its interactions with the viral genomic and antigenomic RNAs. To address the biological functions of the N protein, it was critical to first define this binding interaction. The dissociation constant, K(d), for the interaction of the Hantaan virus (HTNV) N protein and its genomic S segment (vRNA) was measured under several solution conditions. Overall, increasing the NaCl and Mg(2+) in these binding reactions had little impact on the K(d). However, the HTNV N protein showed an enhanced specificity for HTNV vRNA as compared with the S segment open reading frame RNA or a nonviral RNA with increasing ionic strength and the presence of Mg(2+). In contrast, the assembly of Sin Nombre virus N protein-HTNV vRNA complexes was inhibited by the presence of Mg(2+) or an increase in the ionic strength. The K(d) values for HTNV and Sin Nombre virus N proteins were nearly identical for the S segment open reading frame RNA, showing weak affinity over several binding reaction conditions. Our data suggest a model in which specific recognition of the HTNV vRNA by the HTNV N protein resides in the noncoding regions of the HTNV vRNA.  相似文献   

6.
The genome of influenza A viruses comprises eight negative-strand RNA segments. Although all eight segments must be present in cells for efficient viral replication, the mechanism(s) by which these viral RNA (vRNA) segments are incorporated into virions is not fully understood. We recently found that sequences at both ends of the coding regions of the HA, NA, and NS vRNA segments of A/WSN/33 play important roles in the incorporation of these vRNAs into virions. In order to similarly identify the regions of the PB2, PB1, and PA vRNAs of this strain that are critical for their incorporation, we generated a series of mutant vRNAs that possessed the green fluorescent protein gene flanked by portions of the coding and noncoding regions of the respective segments. For all three polymerase segments, deletions at the ends of their coding regions decreased their virion incorporation efficiencies. More importantly, these regions not only affected the incorporation of the segment in which they reside, but were also important for the incorporation of other segments. This effect was most prominent with the PB2 vRNA. These findings suggest a hierarchy among vRNA segments for virion incorporation and may imply intersegment association of vRNAs during virus assembly.  相似文献   

7.
Ro60, also known as SS-A or TROVE2, is an evolutionarily conserved RNA-binding protein that is found in most animal cells, approximately 5% of sequenced prokaryotic genomes and some archaea. Ro60 is present in cells as both a free protein and as a component of a ribonucleoprotein complex, where its best-known partners are members of a class of noncoding RNAs called Y RNAs. Structural and biochemical analyses have revealed that Ro60 is a ring-shaped protein that binds Y RNAs on its outer surface. In addition to Y RNAs, Ro60 binds misfolded and aberrant noncoding RNAs in some animal cell nuclei. Although the fate of these defective Ro60-bound noncoding RNAs in animal cells is not well-defined, a bacterial Ro60 ortholog functions with 3′ to 5′ exoribonucleases to assist structured RNA degradation. Studies of Y RNAs have revealed that these RNAs regulate the subcellular localization of Ro60, tether Ro60 to effector proteins and regulate the access of other RNAs to its central cavity. As both mammalian cells and bacteria lacking Ro60 are sensitized to ultraviolet irradiation, Ro60 function may be important during exposure to some environmental stressors. Here we summarize the current knowledge regarding the functions of Ro60 and Y RNAs in animal cells and bacteria. Because the Ro60 RNP is a clinically important target of autoantibodies in patients with rheumatic diseases such as Sjogren’s syndrome, systemic lupus erythematosus, and neonatal lupus, we also discuss potential roles for Ro60 RNPs in the initiation and pathogenesis of systemic autoimmune rheumatic disease.  相似文献   

8.
Recent studies have indicated that a special type of small noncoding RNAs, phased small-interfering RNAs (phasiRNAs) play crucial roles in many cellular processes of plant development. PhasiRNAs are generated from long RNA precursors at intervals of 21 or 24 nt in plants, and they are produced from both protein-coding gene and long noncoding RNA genes. Different from those in eudicots, grass phasiRNAs include a special class of small RNAs that are specifically expressed in reproductive organs. These grass phasiRNAs are associated with gametogenesis, especially with anther development and male fertility. In this review, we summarized current knowledge on these small noncoding RNAs in male germ cells and their possible biological functions and mechanisms in grass species.  相似文献   

9.
10.
Human vaults are the largest cytoplasmic ribonucleoprotein and are overexpressed in cancer cells. Vaults reportedly function in the extrusion of xenobiotics from the nuclei of resistant cells, but the interactions of xenobiotics with the vault-associated proteins or non-coding RNAs have never been directly observed. In the present study, we show that vault RNAs (vRNAs), specifically the hvg-1 and hvg-2 RNAs, bind to a chemotherapeutic compound, mitoxantrone. Using an in-line probing assay (spontaneous transesterification of RNA linkages), we have identified the mitoxantrone binding region within the vRNAs. In addition, we analyzed the interactions between vRNAs and mitoxantrone in the cellular milieu, using an in vitro translation inhibition assay. Taken together, our results clearly suggest that vRNAs have the ability to bind certain chemotherapeutic compounds and these interactions may play an important role in vault function, by participating in the export of toxic compounds.  相似文献   

11.
The genome of influenza A virus consists of eight-segmented, single-stranded, negative-sense viral RNAs (vRNAs). Each vRNA contains a central coding region that is flanked by noncoding regions. It has been shown that upon virion formation, the eight vRNAs are selectively packaged into progeny virions through segment-specific packaging signals that are located in both the terminal coding regions and adjacent noncoding regions of each vRNA. Although recent studies using next-generation sequencing suggest that multiple intersegment interactions are involved in genome packaging, contributions of the packaging signals to the intersegment interactions are not fully understood. Herein, using synthesized full-length vRNAs of H1N1 WSN (A/WSN/33 [H1N1]) virus and short vRNAs containing the packaging signal sequences, we performed in vitro RNA binding assays and identified 15 intersegment interactions among eight vRNAs, most of which were mediated by the 3′- and 5′-terminal regions. Interestingly, all eight vRNAs interacted with multiple other vRNAs, in that some bound to different vRNAs through their respective 3′- and 5′-terminal regions. These in vitro findings would be of use in future studies of in vivo vRNA–vRNA interactions during selective genome packaging.  相似文献   

12.
By using two reporter protein-encoding virus-like RNAs derived from identical viral RNA (vRNA) segments, we assessed their incorporation efficiency into single progeny virions. Most plaques formed by the recombinant viruses that were generated in cells positive for both reporter genes expressed only one or the other protein. These results suggest that two virus-like RNAs encoding different reporter proteins compete for incorporation into virions, and individual influenza virions incorporate single, but not multiple, copies of homologous vRNA segments.  相似文献   

13.
The influenza A virus genome comprises eight single-stranded negative-sense RNA segments (vRNAs). All eight vRNAs are selectively packaged into each progeny virion via so-called segment-specific genome-packaging signal sequences that are located in the noncoding and terminal coding regions of both the 3′ and the 5′ ends of the vRNAs. However, it remains unclear how these signals ensure that eight different vRNAs are packaged. Here, by using a reverse genetics system, we demonstrated that, in the absence of the other seven vRNAs, a recombinant NP vRNA bearing only a reporter gene flanked by the noncoding NP regions was incorporated into virus-like particles (VLPs) as efficiently as a recombinant NP vRNA bearing the reporter gene flanked by the complete NP packaging signals (i.e., the noncoding sequences and the terminal coding regions). Viruses that comprised a recombinant NP vRNA whose packaging signal was disrupted, and the remaining seven authentic vRNAs, did not undergo multiple cycles of replication; however, a recombinant NP vRNA with only the noncoding regions was readily incorporated into VLPs, suggesting that the packaging signal as currently defined is not necessarily essential for the packaging of the vRNA in which it resides; rather, it is required for the packaging of the full set of vRNAs. We propose that the 3′ and 5′ noncoding regions of each vRNA bear a virion incorporation signal for that vRNA and that the terminal coding regions serve as a bundling signal that ensures the incorporation of the complete set of eight vRNAs into the virion.  相似文献   

14.
Cancer diagnosis have mainly relied on the incorporation of molecular biomarkers as part of routine diagnostic tool. The molecular alteration ranges from those involving DNA, RNA, noncoding RNAs (microRNAs and long noncoding RNAs [lncRNAs]) and proteins. lncRNAs are recently discovered noncoding endogenous RNAs that critically regulates the development, invasion, and metastasis of cancer cells. They are dysregulated in different types of malignancies and have the potential to serve as diagnostic markers for cancer. The expression of noncoding RNAs is altered following many diseases, and besides, some of them can be secreted from the cells into the circulation following the apoptotic and necrotic cell death. These secreted noncoding RNAs are known as cell free RNA. These RNAs can be secreted from the cell through the apoptotic body, extracellular vesicles including microvesicle and exosome, and bind to proteins. Since, lncRNAs display high organ and cell specificity, can be found in the blood, urine, tumor tissue, or other tissues or bodily fluids of some patients with cancer, this review summarizes the most significant and up-to-date findings of research on lncRNAs involvement in different cancers, focusing on the potential of cancer-related lncRNAs as biomarkers for diagnosis, prognosis, and therapy.  相似文献   

15.
Noncoding RNAs have drawn significant attention in biology recently. Whereas the current research is highly inclined to microRNAs, research on other noncoding RNAs has lagged behind. Here, we investigated a novel noncoding RNA that has been known as precursor microRNA miR-886 (pre-miR-886). Pre-miR-886 has been proposed also as a vault RNA, a component of the vault complex implicated in cancer drug resistance. We identified pre-miR-886 as a 102-nucleotide-long, abundant cytoplasmic RNA that is neither a genuine pre-microRNA nor a vault RNA. Pre-miR-886 is physically associated with PKR (Protein Kinase RNA-activated), an interferon-inducible and double-stranded RNA dependent kinase. The suppression of pre-miR-886 activates PKR and its downstream pathways, eIF2α phosphorylation and the NF-κB pathway, leading to impaired cell proliferation. We also found that pre-miR-886 is suppressed in a wide-range of cancer cell lines and in clinical specimens. This study is the first intense characterization of pre-miR-886 as well as the initial report on its function as a PKR regulator, which suggests a critical role in tumorigenesis.  相似文献   

16.
Noncoding RNAs are transcribed in the most regions of the human genome, divided into small noncoding RNAs (less than 200 nt) and long noncoding RNAs (more than 200 nt) according to their size. Compelling evidences suggest that small noncoding RNAs play critical roles in tumorigenesis and tumor progression, especially in renal cell carcinoma. MiRNA, the most famous small noncoding RNA, has been comprehensively explored for its fundamental role in cancer. And several miRNA-based therapeutic strategies have been applied to several ongoing clinical trials. However, piRNAs and tsRNAs, have not received as much research attention, because of several technological limitations. Nevertheless, some studies have revealed the presence of aberration of piRNAs and tsRNAs in renal cell carcinoma, highlighting a potentially novel mechanism for tumor onset and progression. In this review, we provide an overview of three classes of small noncoding RNA: miRNAs, piRNAs and tsRNAs, that have been reported dysregulation in renal cell carcinoma and have the potential for advancing diagnosis, prognosis and therapeutic applications of this disease.  相似文献   

17.
The Ro autoantigen is a ring-shaped RNA-binding protein that binds misfolded RNAs in nuclei and is proposed to function in quality control. In the cytoplasm, Ro binds noncoding RNAs, called Y RNAs, that inhibit access of Ro to other RNAs. Ro also assists survival of mammalian cells and at least one bacterium after UV irradiation. In mammals, Ro undergoes dramatic localization changes after UV irradiation, changing from mostly cytoplasmic to predominantly nuclear. Here, we report that a second role of Y RNAs is to regulate the subcellular distribution of Ro. A mutant Ro protein that does not bind Y RNAs accumulates in nuclei. Ro also localizes to nuclei when Y RNAs are depleted. By assaying chimeric proteins in which portions of mouse Ro were replaced with bacterial Ro sequences, we show that nuclear accumulation of Ro after irradiation requires sequences that overlap the Y RNA binding site. Ro also accumulates in nuclei after oxidative stress, and similar sequences are required. Together, these data reveal that Ro contains a signal for nuclear accumulation that is masked by a bound Y RNA and suggest that Y RNA binding may be modulated during cell stress.  相似文献   

18.
The nucleocapsid (N) protein of hantavirus encapsidates viral genomic and antigenomic RNAs. Previously, deletion mapping identified a central, conserved region (amino acids 175 to 217) within the Hantaan virus (HTNV) N protein that interacts with a high affinity with these viral RNAs (vRNAs). To further define the boundaries of the RNA binding domain (RBD), several peptides were synthesized and examined for the ability to bind full-length S-segment vRNA. Peptide 195-217 retained 94% of the vRNA bound by the HTNV N protein, while peptides 175-186 and 205-217 bound only 1% of the vRNA. To further explore which residues were essential for binding vRNA, we performed a comprehensive mutational analysis of the amino acids in the RBD. Single and double Ala substitutions were constructed for 18 amino acids from amino acids 175 to 217 in the full-length N protein. In addition, Ala substitutions were made for the three R residues in peptide 185-217. An analysis of protein-RNA interactions by electrophoretic mobility shift assays implicated E192, Y206, and S217 as important for binding. Chemical modification experiments showed that lysine residues, but not arginine or cysteine residues, contribute to RNA binding, which agreed with bioinformatic predictions. Overall, these data implicate lysine residues dispersed from amino acids 175 to 429 of the protein and three amino acids located in the RBD as essential for RNA binding.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号