首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study of avian (chicken) glucagon and commercial preparations of cattle glucagon was carried out with the view of studying the evolution of polypeptide hormones in some vertebrate species. A chromatographic procedure for obtaining crystalline hormone preparations from chicken tissues was developed. Study of immunological properties of chicken glucagon in radioimmune systems with highly specific antisera to mammalian glucagon revealed that the immunoreactivity of chicken hormone preparations purchased from CNR (USA) and RSL (USA) makes up to 40% and 60% of that of mammalian glucagon. Estimation of biological activity of the hormones by their ability to activate adenylate cyclase in a test system with plasma membranes of chicken and rat liver as well as to stimulate lipolysis in a test system with chicken adipocytes revealed that chicken glucagon possesses a biological activity within the same concentration range as its mammalian counterpart, i. e., 2.9 X 10(-10)-1 X 10(-5) M. In the majority of cases the effect of chicken glucagon taken in the above concentrations was less pronounced than that of the mammalian hormone. The data obtained suggest that even one amino acid substitution in the chicken glucagon molecule (in comparison with mammalian glucagon) affects the immunological properties of the hormone and its biological activity.  相似文献   

2.
Purification of peptide hormones from chinchilla pancreas by chemical assay   总被引:1,自引:0,他引:1  
J Eng  W A Kleinman  L S Chu 《Peptides》1990,11(4):683-685
Glucagon was purified from chinchilla pancreas and its biological activity determined. It was isolated using a chemical assay to identify peptides with a histidyl residue at the N-terminus. Chinchilla glucagon has the amino acid sequence HSQGTFTSDYSKHLDSRYAQEFVQWLMNT. It differs from the usual mammalian glucagon by amino acid substitutions at positions 13, 18 and 21 from the N-terminus. Despite these sequence changes, its biological activity is conserved. Chinchilla glucagon has approximately the same potency as pig glucagon in stimulating liver membrane adenyl cyclase activity. Pancreatic polypeptide was also purified from chinchilla pancreas based on its Ala1 signal and has the sequence APLEPVYPGDNATPEQMAQYAAEMRRYINMLTRPRY#.  相似文献   

3.
We have compared the ability of glucagon and three highly purified derivatives of the hormone to activate hepatic adenylate cyclase (an expression of biological activity of the hormone) and to compete with [125]glucagon for binding to sites specific for glucagon in hepatic plasma membranes. Relative to that of glucagon, biological activity and affinity of [des-Asn-28,Thr-29](homoserine lactone-27)-glucagon, prepared by CNBr treatment of glucagon, were reduced equally by 40- to 50-fold. By contrast, des-His-1-glucagon, prepared by an insoluble Edman reagent and highly purified (less than 0.5% contamination with native glucagon), displayed a 15-fold decrease in affinity but a 50-fold decrease in biological activity relative to that of the native hormone. At maximal stimulating concentrations, des-His-1-glucagon yielded 70% of the activity given by saturating concentrations of glucagon. Thus, des-His-1-glucagon can be classified as a partial weak agonist. Highly purified monoiodoglucagon and native glucagon displayed identical biological activity and affinity for the binding sites. Our findings suggest that the hydrophilic residues at the terminus of the carboxy region of glucagon are involved in the process of recognition at the glucagon receptor but do not participate in the sequence of events leading to activation of adenylate cyclase. The amino-terminal histidyl residue in glucagon plays an important but not obligatory role in the expression of hormone action and contributes to a significant extent in the recognition process.  相似文献   

4.
Glucagon1-21 has been prepared by treating native glucagon with carboxypeptidase A. Purified glucagon1-21 did not contain detectable methionine (less than 0.001 residue/mol) and the activity of the compound did not change after treatment with cyanogen bromide as has been shown with native glucagon. Glucagon1-21 stimulates hepatic adenylate cyclase activity to the same extent as native glucagon but with 0.1% the potency. Glucagon1-21 also displayed 0.1% the binding affinity of native glucagon to the glucagon receptor in hepatic membranes. Glucagon22-29 alone or in combination with glucagon1-21 did not activate adenylate cyclase or displase 125I-glucagon from its receptor. The finding that glucagon1-21 is a full agonist on adenylate cyclase is discussed in relation to the structure-function relationships required for the biological action of glucagon.  相似文献   

5.
1. Big glucagon was present in extracts of ox, dog, rat and turkey pancreas, representing 10-15% of the glucagon immunoreactivity, and was shown to be of islet origin by its presence in extracts of isolated pigeon islets. 2. Big glucagon was homogeneous by immunoassay after polyacrylamide-gel electrophoresis and was more electronegative than little glucagon. 3. Big glucagon was purified from bovine pancreas, and its apparent molecular weight was estimated by gel filtration as 8200+/-9%. 4. Limited tryptic proteolysis of the molecule produced an immunoreactive component slightly smaller than little glucagon. 5. Linear dilution curves were obtained with mammalian big glucagons by using both enteroglucagon cross-reacting and 'little-glucagon-carboxyl-end-specific' antisera. 6. The half-times for the disappearance of the immunoreactivity of big and little glucagon that had been injected into the rat circulation were 6.9 and 3.2min respectively. 7. Big glucagon was approximately one-sixth as effective as little glucagon in displacing radioactive little glucagon from its liver membrane receptor. 8. Big glucagon was equipotent on a molar basis with little glucagon in the stimulation of the mouse islet adenylate cyclase, an indicator of insulinogenic activity. 9. On a molar basis, big glucagon inhibited basal liver adenylate cyclase activity to the same extent that little glucagon stimulated the enzyme. 10. Big glucagon was without effect on blood glucose concentration in the rat in doses up to 5mug/kg. 11. Big glucagon was equipotent, on a molar basis, with little glucagon in stimulating lipolysis in isolated chicken fat-cells.  相似文献   

6.
7.
 胰高血糖素是由 2 9个氨基酸组成的多肽激素 ,具有促糖元分解的生理功能 ,其拮抗剂有治疗糖尿病病人的潜在应用价值 .在获得重组胰高血糖素基因工程菌基础上 ,利用定点突变技术改造其第 2 1位氨基酸天冬氨酸为丙氨酸 ,并经DNA测序证明胰高血糖素基因发生了点突变 .用IPTG诱导表达后 ,经亲和层析和反相高效液相层析 ,纯化到突变型重组2 1Ala 胰高血糖素 .质谱测定分子量与理论值相符 .利用园二色谱比较重组胰高血糖素和突变的2 1Ala 胰高血糖素在TFE中的二级结构 ,发现胰高血糖素以α螺旋为主要二级结构 ,2 1Ala 胰高血糖素仍有α螺旋结构特征 ,并且含量有所增大 .利用兔升血糖试验 ,发现2 1Ala 胰高血糖素生物活性比重组胰高血糖素减少 51 % (P <0 .0 1 ) .显示天然胰高血糖素第 2 1位氨基酸天冬氨酸与形成α螺旋结构关系不大 ,但在发挥胰高血糖素的生物功能中有重要作用 ,与其可作为钙离子结合位点 ,参与胰高血糖素和受体结合的潜在功能密切相关 .  相似文献   

8.
Developmental increase of tryptophan oxygenase (L--tryptophan: oxygen 2,3-oxidoreductase (decyclizing), EC 1.13.11.11) was studied using hepatocytes of neonatal rats in primary culture. Hepatocytes from rats of 2–30-days-old were isolated and cultured for 2 days. In cultured hepatocytes of 2-day-old rats, tryptophan (2.5 mM), dexamethasone (1.10?5 M) and glucagon (1.10?7 M) did not cause the appearance of tryptophan oxygenase. But the enzyme activity became detectable, when heptocytes from 5-day-old rats were incubated wiht tryptophan, the oxygenase could be induced precociously by dexamethasone, but not by glucagon. The effect of glucagon was first seen 2 weeks after birth. However, in hepatocytes of 9-day-old rats glucagon stimulated formation of cyclic AMP and protein kinase activity (EC 2.7.1.37) and also induced tyrosine aminotransferase (EC 2.6.1.5). When heptocytes of 9-day-old rats were cultured for 4 days, their tryptophan oxygenase became inducible by glucagon. Insulin almost completely inhibited precocious appearance of the enzyme activity evoked by tryptophan plus dexamethasone in hepatocytes of 9-day-old rats. These results suggest that the appearance of tryptophan oxygenase in rat liver during development is due to first the onset of gene coding for tryptophan oxygenase and then stimulation by the sequential of glucocorticoid and glucagon.  相似文献   

9.
Glucagon-(19-29) is 1000-fold more potent that glucagon as an inhibitor of the liver plasma membrane calcium pump, which suggests that this peptide fragment is naturally occurring. Since glucagon-(19-29) is undetectable in plasma, the processing of glucagon into its (19-29) fragment may occur upon interaction of glucagon with its target tissues. The use of a specific radioimmunoassay for glucagon-(19-29) in association with the separation and identification of peptides by high performance liquid chromatography revealed that, upon incubation at 37 degrees C with hepatic plasma membranes, glucagon is processed into its (19-29) C-terminal fragment. The identity of the fragment was confirmed by amino acid sequencing. The processing activity was inhibited by reagents of the thiol group and by 1,10-phenanthroline, suggesting that a thiol endopeptidase containing a catalytically active metal is involved in this processing. Following its production, glucagon-(19-29) was degraded with a half-life of less than 10 s. This degradation was inhibited by bacitracin and by the aminopeptidase inhibitors bestatin and amastatin. When glucagon was incubated with liver plasma membranes in the absence of inhibitors, the accumulation of glucagon-(19-29) reached a maximum at 2 min (1% of initial glucagon), followed by a slow decline. In the presence of bacitracin and bestatin, the amounts of glucagon-(19-29) obtained from glucagon increased continuously, 1 and 2% of glucagon being transformed after 10 and 30 min, respectively. The production of glucagon-(19-29) did not appear to be associated with the binding of glucagon to its receptors, since (i) guanosine 5'-(3-O-thio)triphosphate, a compound which decreases the glucagon-receptor interaction, could not decrease the conversion of glucagon into glucagon-(19-29); (ii) a glucagon analogue which displays a strongly decreased affinity for the hepatic glucagon receptors was processed similarly to glucagon. The conversion also occurs upon incubation with intact hepatoma cells in monolayer culture. These observations suggest that, under physiological conditions, glucagon is processed in liver by cleavage of the Arg17-Arg18 basic doublet, leading to the production of a fragment which is known to display an original biological specificity, namely the modulation of the hepatocyte plasma membrane calcium pump.  相似文献   

10.
Using perfused liver of the rat, the hepatic uptake of glycosylated insulin (GI) and glucagon (GG) and its effects on hepatic glucose output were investigated. Insulin and glucagon were glycosylated in ambient high glucose concentration, and GI80 or GG80 (insulin or glucagon incubated with 0.08% glucose), GI350 or GG350 (incubated with 0.35% glucose), and GI1000 or GG1000 (incubated with 1% glucose) were prepared. The liver was perfused with the medium containing 1000 microU/ml insulin and 200 pg/ml glucagon or 200 microU/ml insulin and 1000 pg/ml glucagon. The fractional uptake of insulin or glucagon by perfused liver was not significantly altered by the glycosylation. In the liver perfused with 1000 microU/ml insulin and 200 pg/ml glucagon, glucose output was not changed by the glycosylation of the hormones, while in the liver perfused with 200 microU/ml insulin and 1000 pg/ml glucagon, GI1000 reduced its biological activity, as reflected by insulin-mediated decrease in glucose output. These results suggest that in the liver insulin incubated with markedly high concentration of glucose reduces its biological activity at a physiological concentration in the presence of high concentration of glucagon.  相似文献   

11.
The 29 amino acid polypeptide hormone glucagon was cleaved into two large fragments by the enzyme clostripain. The conformational properties of these two fragments were monitored by circular dichroism at pH 2 and 12 in both the presence and absence of sodium dodecyl sulfate. Both glucagon (1-17) and glucagon (19-29) have reduced abilities to fold in aqueous solution. However, both fragments can take on structure of higher apparent helical content in acidic solution in the presence of sodium dodecyl sulfate but only the glucagon (19-29) retains this conformation at high pH. Neither of the two fragments react with dimyristoylphosphatidylcholine as the intact peptide does. Only the carboxyl terminal fragment was capable of reacting with an antibody specific for glucagon. The glucagon (1-17) has markedly reduced affinity for binding to the glucagon receptor as well as markedly reduced ability to stimulate adenylate cyclase activity which is not affected by the presence of glucagon (19-29). It is proposed that the intact sequence provides specific groups required for activity as well as the potential for forming a stable amphipathic helix, both of which are necessary for full biological activity at low peptide concentrations.  相似文献   

12.
Recent studies on the glucagon antagonist des-His1-[Glu9]glucagon amide have resulted in pure inhibitors of the hormone, suggesting that the inhibitory properties may be centered around position 9. The present study was designed to investigate the chemical characteristics of substitutions in position 9 of glucagon that determine binding affinity and biological activity. Twenty replacement analogs of position 9 of glucagon were synthesized and assessed for their ability to bind to the glucagon receptor in rat hepatocyte membranes and to activate adenylate cyclase. Any substitution of aspartic acid 9 was accompanied by a severely diminished capacity to transmit the biological signal, while retaining receptor binding affinity. These results are an indication of an uncoupling of receptor binding and biological activity at this locus and define a central role of aspartic acid 9 in glucagon activity. Single replacement or deletion of either His1 or Asp9 in glucagon caused a 20- to 50-fold decrease in cyclase activity, whereas these same changes made in tandem caused virtually complete loss of activity, with decreases of 10(4)-to 10(6)-fold. These observations have led us to speculate that, at the molecular level, the region of glucagon required for transduction of the biological response may be distinct from the binding region and is mediated by a coupled interaction between His1 and Asp9 of the hormone and a complementary functional site of the glucagon receptor.  相似文献   

13.
Studies support a role for glucagon-like peptide 1 (GLP-1) as a potential treatment for diabetes. However, since GLP-1 is rapidly degraded in the circulation by cleavage at Ala(2), its clinical application is limited. Hence, understanding the structure-activity of GLP-1 may lead to the development of more stable and potent analogues. In this study, we investigated GLP-1 analogues including those with N-, C-, and midchain modifications and a series of secretin-class chimeric peptides. Peptides were analyzed in CHO cells expressing the hGLP-1 receptor (R7 cells), and in vivo oral glucose tolerance tests (OGTTs) were performed after injection of the peptides in normal and diabetic (db/db) mice. [D-Ala(2)]GLP-1 and [Gly(2)]GLP-1 showed normal or relatively lower receptor binding and cAMP activation but exerted markedly enhanced abilities to reduce the glycemic response to an OGTT in vivo. Improved biological effectiveness of [D-Ala(2)]GLP-1 was also observed in diabetic db/db mice. Similarly, improved biological activity of acetyl- and hexenoic-His(1)-GLP-1, glucagon((1-5)-, glucagon((1-10))-, PACAP(1-5)-, VIP(1-5)-, and secretin((1-10))-GLP-1 was observed, despite normal or lower receptor binding and activation in vitro. [Ala(8/11/12/16)] substitutions also increased biological activity in vivo over wtGLP-1, while C-terminal truncation of 4-12 amino acids abolished receptor binding and biological activity. All other modified peptides examined showed normal or decreased activity in vitro and in vivo. These results indicate that specific N- and midchain modifications to GLP-1 can increase its potency in vivo. Specifically, linkage of acyl-chains to the alpha-amino group of His(1) and replacement of Ala(2) result in significantly increased biological effects of GLP-1 in vivo, likely due to decreased degradation rather than enhanced receptor interactions. Replacement of certain residues in the midchain of GLP-1 also augment biological activity.  相似文献   

14.
Both vasoactive intestinal peptide (VIP) and glucagon rapidly elevated cyclic AMP levels in embryonic chick retinal pigment epithelium (RPE), in culture as well as in freshly dissected tissue. In cultured cells, the half-maximal activities of VIP and glucagon were 5 X 10(-8) M and 3 X 10(-8) M, respectively. After 3 min of reaction, VIP elevated intracellular cyclic AMP by 100-fold; elevation with glucagon was up to 10-fold. Both neuropeptides stimulated adenylate cyclase activity in RPE membranes. Glucagon showed a half-maximal activity of 1 X 10(-8) M. VIP remained more effective than glucagon in stimulating adenylate cyclase activity, but the dose-response curve was shifted to a higher concentration range when compared to that of the VIP-elevated intracellular cyclic AMP.  相似文献   

15.
It has been suggested that nitric oxide (NO, nitrogen monoxide) is a regulator of carbohydrate metabolism in skeletal muscle. The present study was undertaken to investigate the acute effects of the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) on blood glucose levels and on the gluco-regulatory hormones insulin and glucagon in healthy dogs. The acute effects of SNAP on mean arterial pressure and heart rate were also investigated. The drug was administered intravenously and the pre- and postprandial blood glucose, plasma insulin, and glucagon concentrations were determined at half-hour time intervals postadministration after a glucose challenge. The plasma nitrate and nitrite concentrations were measured and taken as the biochemical markers of in vivo NO formation. The oral glucose tolerance test revealed an impaired glucose tolerance in SNAP-treated dogs as reflected by the area under the glucose curve, 1150.50 +/- 63.00 mmol x 150 min and 1355.25 +/- 102.01 mmol/L x 150 min in dogs treated with 10 and 20 mg/kg of SNAP, respectively, compared with 860.25 +/- 60.68 mmol/L x 150 min in captopril-treated controls (P < 0.05). The 2-h blood glucose concentration in dogs treated with 20 mg/kg body wt of SNAP was 9.17 +/- 1.10 mmol/L compared with 5.59 +/- 0.26 mmol/L for captopril-treated controls (P = 0.015). The oral glucose tolerance test also confirmed an impaired insulin secretion in the SNAP-treated dogs. While the plasma insulin concentration increased gradually in the captopril-treated controls to a peak value of 39.50 +/- 2.55 microIU/ml, 1.5 h after a glucose challenge there was a decrease in the plasma insulin concentration in SNAP-treated dogs to a low value of 20.67 +/- 0.88 microIU/ml (P = 0.006). In contrast, there were no significant differences in plasma glucagon concentration in SNAP-treated dogs and captopril-treated dogs at any time points. Using the Griess reaction, we found that there was a 27-95% increase in plasma nitrate/nitrite concentration on administration of SNAP. The sustained hyperglycemic effect observed in SNAP-treated dogs was accompanied by a marginal decrease in the mean arterial blood pressure and a significant increase in heart rate (P < 0.05). We conclude that acute administration of SNAP in the oral glucose tolerance test releases NO that modulates the parameters of carbohydrate metabolism.  相似文献   

16.
The presence of a Tumor Necrosis Factor alpha (TNFalpha)-like molecule has been suggested in fish by biological assays and biological and antigenic cross-reactivities with human TNFalpha. In the present study, whether rainbow trout macrophages produce TNFalpha was examined. Murine recombinant TNFalpha (m-rTNFalpha) was used as the standard mammalian TNFalpha. The supernatants were harvested from trout macrophage culture stimulated with lipopolysaccharide (LPS) and then passed through a Polymyxin B column to remove LPS. Results show that trout macrophage culture supernatants exhibit TNF-like activities. The supernatants significantly enhanced neutrophil migration and macrophage respiratory burst activity as assessed by NBT reduction test. The supernatants were also highly cytotoxic to murine L929 cells, which are known to be sensitive to mammalian TNFalpha. The biological activities of TNF in the trout macrophage culture supernatant was determined as 2.6 U ml(-1) in the presence of actinomycin D. This indicates biological cross-reactivity of trout TNFalpha-like factor on mammalian cells. Moreover, these activities were inhibited by a rabbit anti-mTNFalpha antibody. These results suggest that rainbow trout macrophages produce a TNFalpha-like factor that is similar to the mammalian TNFalpha in functions.  相似文献   

17.
The ability of catfish glucagon and glucagon-like peptide to bind and activate mammalian glucagon receptors was investigated. Neither catfish peptide binds to glucagon receptors of rat liver, hypothalamus or pituitary. Neither stimulates adenylate cyclase activity in liver membranes. Catfish glucagon fails to activate adenylate cyclase in hypothalamic or pituitary membranes in contrast to mammalian glucagon. However, catfish glucagon-like peptide does stimulate hypothalamic and pituitary adenylate cyclase (EC50 approximately 1 pM) possibly through mammalian glucagon-like peptide receptors.  相似文献   

18.
Glucagon and its receptors have been identified within the mammalian brain, and their anatomical distribution correlates well with the distribution of opioid peptides and their receptors. To evaluate possible physiological interactions between these two peptidergic systems, we examined the effects of glucagon on two opioid responses - bradycardia and antinociception. Glucagon administered either intravenously (iv) (100-1000 micrograms/kg) or intracerebroventricularly (icv) (5 micrograms) significantly attenuated morphine-induced (200 micrograms/kg, iv) bradycardia without producing any alterations in cardiovascular parameters when given alone. Furthermore, glucagon did not antagonize the bradycardia produced by phenyldiguanide (10 micrograms/kg, iv), a non-opioid substance. Peripheral (1 mg/kg, iv) and central (5 micrograms, icv) glucagon pretreatment antagonized morphine-induced (7.5 mg/kg, intraperitoneal) antinociception by 67% and 86%, respectively, at 30 minutes (as determined by the hot plate test). Glucagon treatment alone at these doses did not alter baseline response latencies. In both cases, central injections of glucagon were more effective than iv injections in antagonizing morphine's effects. These findings demonstrate a central action for glucagon and provide the first evidence that this neuropeptide may function as an endogenous antagonist of opioid actions.  相似文献   

19.
Whole blood serum (WBS) and platelet-poor plasma-derived serum (PDS) from the same normal subject were compared for their abilities to support human megakaryocyte (MK) colony formation. In all cases, PDS promoted the growth of a higher number (20-50%) of MK colonies than did WBS. Increasing amounts of WBS decreased the number of colonies, whereas increasing concentration of PDS had no marked effects. Crude platelet extracts or platelet secretory products from thrombin-activated platelets also elicited an inhibition of MK colony formation in a dose-dependent manner. A complete inhibition was found for a dose equivalent to 1.10(9) platelets/ml and a 50% inhibition in a range of 1.10(7)-1.10(8) platelets/ml. These platelet products were also inhibitory for erythroid progenitor growth. Platelets from two patients with gray platelet syndrome elicited only a minor inhibition of MK growth, suggesting that the platelet alpha granule is the origin of this inhibition. When platelet extracts were acid-treated, the biological activity of the inhibitor on CFU-MK and CFU-E growth was 20-50-fold higher. In addition, a potent stimulatory activity on the growth of day 7 CFU-GM was observed. The enhancement of biological activities by acid treatment suggests that type beta transforming growth factor (TGF-beta) could be involved in this platelet inhibitory activity. The homogeneous native TGF-beta (from 1 pg to 1 ng/ml) produced the same effects previously induced by platelet products. It totally inhibited CFU-MK growth (at a 500 pg/ml), it inhibited CFU-E growth, and it stimulated growth of day 7 CFU-GM in the presence of a colony-stimulating factor. The inhibition of CFU-MK growth was also observed on purified progenitors. In conclusion, these results suggest that TGF-beta may be implicated in negative autocrine regulation of megakaryopoiesis. However, since this molecule has ubiquitous biological activities, its physiologic relevance as a normal regulator of megakaryopoiesis requires further investigation.  相似文献   

20.
Few studies have examined the effect of age on the ovulation cycle of the hen. Our aim was to determine if changes in the ovary account for the decrease in egg production with age. Young hens (28-38 wk of age) laying at least 20 eggs per sequence and old hens (53-63 wk of age) laying 3-6 eggs per sequence were used. We determined luteinizing hormone (LH) sensitivity of the ovary of young and old hens by measuring LH stimulable adenylyl cyclase (AC) activity of the granulosa layer. We also measured theca- and granulosa-layer weights and steroid concentrations of these layers and of the serum in young and old hens. Mean basal AC activity (pg/min/mg protein) for the largest (F1) and second largest (F2) follicles from young and old hens did not differ. A significant dose-response relationship to LH was present in all groups, and AC responsiveness to increasing doses of LH was greater in the F1 and F2 follicles of young hens than in the same follicles of old hens. The F4 and F5 follicles of young hens had a significantly greater estradiol (E2) concentration (pg/mg theca protein) compared to old hens, while the E2 concentration in the F2 follicle was greater in old hens. The theca layer of the F1 follicle of old hens weighed significantly more than that of young hens, whereas the theca layer of the F3, F4 and F5 follicles from young hens weighed more than those of old hens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号