首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of adding cellobiose on the transformation of vanillic acid to vanillin by two strains of Pycnoporus cinnabarinus MUCL39532 and MUCL38467 were studied. When maltose was used as the carbon source in the culture medium, very high levels of methoxyhydroquinone were formed from vanillic acid. When cellobiose was used as the carbon source and/or added to the culture medium of P. cinnabarinus strains on day 3 just before vanillic acid was added, it channelled the vanillic acid metabolism via the reductive route leading to vanillin. Adding 3.5 g l−1 cellobiose to 3-day-old maltose cultures of P. cinnabarinus MUCL39532 and 2.5 g l−1 cellobiose to 3-day-old cellobiose cultures of P. cinnabarinus MUCL38467, yielded 510 mg l−1 and 560 mg l−1 vanillin with a molar yield of 50.2 % and 51.7 % respectively. Cellobiose may either have acted as an easily metabolizable carbon source, required for the reductive pathway to occur, or as an inducer of cellobiose:quinone oxidoreductase, which is known to inhibit vanillic acid decarboxylation. Received: 24 July 1996 / Received revision: 29 November 1996 / Accepted: 29 November 1996  相似文献   

2.
Fungal biotransformation of p-coumaric acid into caffeic acid, potentially a strong antioxidant, was evidenced in Pycnoporus cinnabarinus cultures grown with high feeding of p-coumaric acid. Preliminary experiments showed no toxicity of both p-coumaric and caffeic acids at concentrations ranging from 0 to 500 mg l–1. Feeding 450 mg p-coumaric acid l–1 into P. cinnabarinus cultures grown on 20 g l–1 glucose medium resulted in the production of 257 mg caffeic acid l–1with a molar yield of 21%.  相似文献   

3.
Corynebacterium glutamicum is well known as an important industrial amino acid producer. For a few years, its ability to produce organic acids, under micro‐aerobic or anaerobic conditions was demonstrated. This study is focused on the identification of the culture parameters influencing the organic acids production and, in particular, the succinate production, by this bacterium. Corynebacterium glutamicum 2262, used throughout this study, was a wild‐type strain, which was not genetically designed for the production of succinate. The oxygenation level and the residual glucose concentration appeared as two critical parameters for the organic acids production. The maximal succinate concentration (4.9 g L?1) corresponded to the lower kLa value of 5 h?1. Above 5 h?1, a transient accumulation of the succinate was observed. Interestingly, the stop in the succinate production was concomitant with a lower threshold glucose concentration of 9 g L?1. Taking into account this threshold, a fed‐batch culture was performed to optimize the succinate production with C. glutamicum 2262. The results showed that this wild‐type strain was able to produce 93.6 g L?1 of succinate, which is one of the highest concentration reported in the literature.  相似文献   

4.
Background: Colonization of the gastric mucosa by Helicobacter pylori is one of the most important causes of acute and chronic gastric pathologies in humans. Achieving the growth of H. pylori in liquid media is of great importance in the development of clinical studies. In this study, we developed a sequential optimization strategy based on statistical models to improve the conditions of liquid culture of H. pylori. Materials and Methods: Four statistical models were sequentially used. First, a Box‐Behnken design was used to select the best process conditions (shaking speed, inoculum concentration, and final volume of culture). Secondly, a general factorial design was used to evaluate the influence of adding gel blocks or gel beads (shape and composition). Then a D‐optimal reduce design was carried out to allow the selection of the most influential factors in increasing the cell concentration (culture media components). Finally, another Box‐Behnken design was used to optimize the concentration of the culture media components previously selected. Results: After 12 hours of liquid culture a concentration of 25 × 108 cells per mL (9.4 log10 cells per mL) of H. pylori was obtained, compared with a predicted 32 × 108 (9.5 log10 cells per mL), which means between 1 and 5 log10 units higher than some previous reports. Conclusions: The sequential statistical approach increased the planktonic H. pylori cell culture. The final culture media and conditions were: Brain Heart Infusion, blood agarose (1.5% w/v), lamb’s blood (3.18% v/v), DENT (0.11% v/v), and Vitox (0.52% v/v) at 60 rpm and 37 °C with filtered CO2 (5% v/v) bubbled directly into the culture media in a final volume of 76.22 mL.  相似文献   

5.

The key factors influencing the production of C-phycocyanin (C-PC) and extracellular polymeric substances (EPS) by photoautotrophic culture of Arthrospira sp. were optimized using Taguchi method. Six factors were varied at either three or two levels as follows: light intensity at three levels; three initial culture pHs; two species of Arthrospira; three concentrations of Zarrouk’s medium; three rates of aeration of the culture with air mixed with 2% v/v carbon dioxide; and two incubation temperatures. All cultures ran for 14 days. The optimal conditions for the production of C-PC and EPS were different. For both products, the best cyanobacterium proved to be Arthrospira maxima IFRPD1183. The production of C-PC was maximized with the following conditions: a light intensity of 68 µmol photons m−2 s−1 (a diurnal cycle of 16-h photoperiod and 8-h dark period), an initial pH of 10, the full strength (100%) Zarrouk’s culture medium, an aeration rate of 0.6 vvm (air mixed with 2% v/v CO2) and a culture temperature of 30 °C. The concentration of Zarrouk’s medium was the most important factor influencing the final concentration of C-PC. The optimal conditions for maximal production of EPS were as follows: a light intensity of 203 µmol photons m−2 s−1 with the earlier specified light–dark cycle; an initial pH of 9.5; a 50% strength of Zarrouk’s medium; an aeration rate of 0.2 vvm (air mixed with 2% v/v CO2); and a temperature of 35 °C. Production of C-PC and EPS in raceway ponds is discussed.

  相似文献   

6.
Photoautotrophic fatty acid production of a highly CO2‐tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol‐photon m?2 s?1 was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β‐oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH‐dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3?]/([CO2]+n[ ]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1053–1057, 2015  相似文献   

7.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

8.
A strategy of experimental design using a fractional factorial design (FFD) and a central composite rotatable design (CCRD) were carried out with the aim to obtain the best conditions of temperature (20–30°C), agitation rate (100–300 rpm), initial pH (5.0–7.0), inoculum concentration (5–15%), and glucose concentration (30–70 g/l) for glutathione (GSH) production in shake-flask culture by Saccharomyces cerevisiae ATCC 7754. By a FFD (25–2), the agitation rate, temperature, and pH were found to be significant factors for GSH production. In CCRD (22) was obtained a second-order model equation, and the percent of variation explained by the model was 95%. The results showed that the optimal culture conditions were agitation rate, 300 rpm; temperature, 20°C; initial pH, 5; glucose, 54 g/l; and inoculum concentration, 5%. The highest GSH concentration (154.5 mg/l) was obtained after 72 h of fermentation.  相似文献   

9.
Xian M  Kang Y  Yan J  Liu J  Bi Y  Zhen K 《Current microbiology》2002,44(2):141-144
The production of linolenic acid in mycelial lipids reached 0.31 mg/ml of culture broth when Mortierella isabellina was cultivated in a medium consisting of 2% octadecanol, 1% yeast extract, and 25 mmol/L of Mg2+ at 23°C for 5 days. Cultivation conditions were studied, and the results showed that (i) a suitable concentration of Mg2+ in the medium caused an increase in mycelial mass as well as linolenic acid production; (ii) when incubated at 23°C, maximal linolenic acid productivity was reached, although a higher content of the acid in total fatty acids was found at the lower temperature; (iii) the effect of substrate concentration on linolenic acid yield showed that the latter increased with concentration of substrate, and maximal linolenic acid yield was obtained with concentrations of 2% octadecanol and 1% yeast extract. Received: 27 November 2000 / Accepted: 22 June 2001  相似文献   

10.
Optimum culture conditions for the production of exfoliative toxin by Staphylococcus hyicus (shET) were examined. High shET activity was obtained from the culture filtrate of HI and TY broth inoculated with S. hyicus. The pH in these two media ranged from 7 to 8.5 during bacterial culture, while the lowest pH in TS and BHI broth was less than 6. shET activity in the culture filtrate from TY broth inoculated with 107 CFU of S. hyicus per ml was higher than that in TY broth inoculated with 106 and 108 CFU of bacteria per ml. When shET activity in the culture filtrate was measured under various shaking conditions, the culture filtrate shaken at 75 oscillations per min had the highest shET activity of the five shaking conditions. shET activity of the culture filtrate of TY broth to which protease inhibitor had been added was the same as that of TY broth without inhibitor. shET activity in a shaking culture in an Erlenmeyer flask was also the same as that in sac culture and that in shaking culture using a shaking (Sakaguchi) flask. shET activity in TY broth supplemented with 100 mM glucose was significantly lower than that in TY broth without glucose. Based on the above results, the optimum culture conditions for the production of shET were as follows: inoculation of 3 × 109 CFU of S. hyicus strain P-1 into 300 ml of TY broth in a 2,000-ml Erlenmeyer flask, and incubation at 37 C with shaking at 75 oscillations per min. Then shET activity of the culture filtrate under appropriate culture conditions was measured after various incubation periods. shET activity was detected 6 hr after inoculation, reached the maximum (253 exfoliative unit/0.1 ml) at 16 hr and decreased between 20 and 48 hr. Thus, the optimum incubation period was determined to be 16 hr. Then the optimum concentration of ammonium sulfate for isolation of shET from the culture filtrate under appropriate culture conditions was examined. The greatest shET activity was obtained from the fraction salted out with 90% saturated ammonium sulfate. Thus, the optimum concentration of ammonium sulfate for the isolation of shET was determined to be 90% saturation.  相似文献   

11.
The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be converted into biodiesel. However, these lipids cannot be efficiently extracted from cells due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal when traditional extraction methods are employed. Therefore, a microalgae system with high lipid productivity and thinner cell walls could be more suitable for lipid production from microalgae. This study addresses the effect of culture conditions, specifically carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio of lipid productivity/cellulose content. Optimization of culture conditions was done by response surface methodology. The empirical model for biomass concentration (R2 = 96.0%) led to a predicted maximum of 1123.2 mg dw L?1 when carbon dioxide and sodium nitrate concentrations were 2.33% (v/v) and 5.77 mM, respectively. For lipid productivity/cellulose content ratio (R2 = 95.2%) the maximum predicted value was 0.46 (mg lipid L?1 day?1)(mg cellulose mg biomass?1)?1 when carbon dioxide concentration was 4.02% (v/v) and sodium nitrate concentration was 3.21 mM. A common optimum point for both variables (biomass concentration and lipid productivity/cellulose content ratio) was also found, predicting a biomass concentration of 1119.7 mg dw L?1 and lipid productivity/cellulose content ratio of 0.44 (mg lipid L?1 day?1)(mg cellulose mg biomass?1)?1 for culture conditions of 3.77% (v/v) carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated and results supported their accuracy. This study shows that it is possible to improve lipid productivity/cellulose content by manipulation of culture conditions, which may be applicable to any scale of bioreactors. Biotechnol. Bioeng. 2013; 110: 2114–2122. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Toxic dinoflagellates are important in natural ecosystems and are ofglobal economic significance because of the impact of toxic blooms onaquaculture and human health. Both the organisms and the toxins they producehave potential for biotechnology applications. We investigated autotrophicgrowth of a toxic dinoflagellate, Alexandrium minutum, inthree different high biomass culture systems, assessing growth, productivityandtoxin production. The systems used were: aerated and non-aerated2-L Erlenmeyer flasks; 0.5-L glass aerated tubes; anda 4-L laboratory scale alveolar panel photobioreactor. A range ofindicators was used to assess growth in these systems. Alexandriumminutum grew well in all culture conditions investigated, with amarked increase in both biomass and productivity in response to aeration. Thehighest cell concentration (4.9 × 105 cellsmL–1) and productivity (2.6 ×104cells mL–1d–1) was achieved inthe aerated glass culture tubes. Stable growth of A.minutum in the laboratory scale alveolar panel photobioreactor wasmaintained over a period of five months, with a maximum cell concentration of3.3 × 105 cells mL–1, a meanproductivity of 1.4 × 104 cells mL–1d–1, and toxin production of approximately 20g L–1 d–1 with weeklyharvesting.  相似文献   

13.
Fermentation conditions were developed in order to achieve simultaneously a high biomass concentration and high-level expression of a hybrid cI-human insulin B peptide gene. In our system, this hybrid gene is under control of the Escherichia coli trp promoter, in a trp derivative strain of E. coli W3110. The dual role of tryptophan concentration on cellular growth and hybrid gene regulation was studied in 10-l batch fermentations. In the best batch conditions, a biomass concentration of 12 g dry weight/l can be obtained, and 0.53 g/l of cI-insulin B hybrid protein is produced. Tryptophan in the culture medium is consumed by the growing culture, until a level is reached that causes induction of the hybrid gene. Plasmid loss was detected, as only 62% of the cells retained the recombinant plasmid. In order to increase the hybrid protein production level, a fed-batch culture strategy was developed whereby the specific growth rate of the cells was restrained. Using the same amount of nutrients as in the batch fermentations, it was possible to increase the final biomass concentration to 20 g/l, plasmid-bearing cells in the population to 90% and recombinant hybrid protein to 1.21 g/l. Correspondence to: F. Bolivar  相似文献   

14.
Natural and recombinant fungal laccases for paper pulp bleaching   总被引:10,自引:0,他引:10  
Three laccases, a natural form and two recombinant forms obtained from two different expression hosts, were characterized and compared for paper pulp bleaching. Laccase from Pycnoporus cinnabarinus, a well known lignolytic fungus, was selected as a reference for this study. The corresponding recombinant laccases were produced in Aspergillus oryzae and A. niger hosts using the lacI gene from P. cinnabarinus to develop a production process without using the expensive laccase inducers required by the native source. In flasks, production of recombinant enzymes by Aspergilli strains gave yields close to 80 mg l–1. Each protein was purified to homogeneity and characterized, demonstrating that the three hosts produced proteins with similar physico-chemical properties, including electron paramagnetic resonance spectra and N-terminal sequences. However, the recombinant laccases have higher Michaelian (K m) constants, suggesting a decrease in substrate/enzyme affinity in comparison with the natural enzyme. Moreover, the natural laccase exhibited a higher redox potential (around 810 mV), compared with A. niger (760 mV) and A. oryzae (735 mV). Treatment of wheat straw Kraft pulp using laccases expressed in P. cinnabarinus or A. niger with 1-hydroxybenzotriazole as redox mediator achieved a delignification close to 75%, whereas the recombinant laccase from A. oryzae was not able to delignify pulp. These results were confirmed by thioacidolysis. Kinetic and redox potential data and pulp bleaching results were consistent, suggesting that the three enzymes are different and each fungal strain introduces differences during protein processing (folding and/or glycosylation).  相似文献   

15.
The continuous production of citric acid from dairy wastewater was investigated using calcium-alginate immobilizedAspergillus niger ATCC 9142. The citric acid productivity and yield were strongly affected by the culture conditions. The optimal pH, temperature, and dilution rate were 3.0, 30°C, and 0.025 h−1, respectively. Under optimal culture conditions, the maximum productivity, concentration, and yield of citric acid produced by the calcium-alginate immobilizedAspergillus niger were 160 mg L−1 h−1, 4.5 g/L, and 70.3% respectively. The culture was continuously perfored for 20 days without any apparent loss in citric acid productivity. Conversely, under the same conditions with a batch shake-flask culture, the maximum productivity, citric acid concentration, and yield were only 63.3 mg L−1 h−1, 4.7 g/L and 51.4%, respectively. Therefore, the results suggest that the bioreactor used in this study could be potentially used for continuous citric acid production from dairy wastewater by applying calcium-alginate immobilizedAspergillus niger.  相似文献   

16.
The continuous cultivation technique has been used to screen for microorganisms producing d-hydantoinase, a biocatalyst involved in the production of optically active amino acids. Pseudomonas putida strain DSM 84 was used as a model hydantoinase producer to establish selective culture conditions through the addition of various pyrimidines, dihydropyrimidines, hydantoins and 5-monosubstituted hydantoins. Thymine induced more activity than all cyclic amides tested. Addition of thymine as a non-metabolised inducer at a concentration of 0.05 g l–1 in a continuous culture of P. putida stimulated hydantoinase production up to 80 times the basal level. Using continuous culture conditions established with the model strain, a different strain of P. putida having hydantoinase activity was isolated from commercial mixed cultures of microorganisms. DNA fingerprinting revealed that this new isolate was distinct from strain DSM 84. When used as a probe, the d-hydantoinase gene of strain DSM 84 hybridized with the DNA of the new P. putida isolate.  相似文献   

17.
The culture conditions for gibberellic acid (GA3) production by the fungus Penicillium variable (P. variable) was optimized using a statistical tool, response surface methodology (RSM). Interactions of culture conditions and optimization of the system were studied using Box–Behnken design (BBD) with three levels of three variables in a batch flask reactor. Experimentation showed that the model developed based on RSM and BBD had predicted GA3 production with R 2  = 0.987. The predicted GA3 production was optimum (31.57 mg GA3/kg substrate) when the culture conditions were at 7 days of incubation period, 21% v/w of inoculum size, and 2% v/w of olive oil concentration as a natural precursor. The results indicated that RSM and BBD methods were effective for optimizing the culture conditions of GA3 production by P. variable mycelia.  相似文献   

18.
Growth and spirolide production of the toxic dinoflagellate Alexandrium ostenfeldii (Danish strain CCMP1773) were studied in batch culture and a photobioreactor (continuous cultures). First, batch cultures were grown in 450 mL flasks without aeration and under varying conditions of temperature (16 and 22 °C) and culture medium (L1, f/2 and L1 with addition of soil extract). Second, cultures were grown at 16 °C in 8 L aerated flat-bottomed vessels using L1 with soil extract as culture medium. Finally, continuous cultures in a photobioreactor were conducted at 18 °C in L1 with soil extract; pH was maintained at 8.5 and continuous stirring was applied.This study showed that A. ostenfeldii growth was significantly affected by temperature. At the end of the exponential phase, maximum cell concentration and cell diameter were significantly higher at 16 °C than at 22 °C. In batch culture, maximum spirolide quota per cell (approx. 5 pg SPX 13-desMeC eq cell−1) was detected during lag phase for all conditions used. Spirolide quota per cell was negatively and significantly correlated to cell concentration according to the following equation: y = 4013.9x−0.858. Temperature and culture medium affected the spirolide profile which was characterized by the dominance of 13,19-didesMeC (29–46%), followed by SPX-D (21–28%), 13-desMeC (21–23%), and 13-desMeD (17–21%).Stable growth of A. ostenfeldii was maintained in a photobioreactor over two months, with maximum cell concentration of 7 × 104 cells mL−1. As in batch culture, maximum spirolide cell quota was found in lag phase and then decreased significantly throughout the exponential phase. Spirolide cell quota was negatively and significantly correlated to cell concentration according to the equation: y = 12,858x−0.8986. In photobioreactor, spirolide profile was characterized by higher proportion of 13,19-didesMeC (60–87%) and lower proportions of SPX-D (3–12%) and 13-desMeD (1.6–10%) as compared to batch culture.  相似文献   

19.
The production of chitosan from the mycelia ofAbsidia coerulea was studied to improve cell growth and chitosan productivity. Culture conditions were optimized in batch cultivation (pH 4.5 agitator speed of 250 rpm, and aeration rate of, 2 vvm) and the maximum chitosan concentration achieved was 2.3 g/L under optimized conditions. Continuous culture was carried out successfully by the formation of new growth spots under optimized conditions, with a chitosan productivity of 0.052 gL−1 h−1, which is the highest value to date, and was obtained at a dilution rate of 0.05 h−1. Cell chitosan concentrations reached about 14% in the steady state, which is similar to that achieved in batch culture. This study shows that for the continuous culture ofAbsidia coerulea it is vital to control the medium composition.  相似文献   

20.
The microalgae Chlorella protothecoides UTEX 25, Chlorella sp. TISTR 8991, and Chlorella sp. TISTR 8990 were compared for use in the production of biomass and lipids under photoautotrophic conditions. Chlorella sp. TISTR 8990 was shown to be potentially suitable for lipid production at 30°C in a culture medium that contained only inorganic salts. For Chlorella sp. TISTR 8990 in optimal conditions in a stirred tank photobioreactor, the lipid productivity was 2.3 mg L−1 h−1 and after 14 days the biomass contained more than 30% lipids by dry weight. To attain this, the nitrogen was provided as KNO3 at an initial concentration of 2.05 g L−1 and chelated ferric iron was added at a concentration of 1.2 × 10−5 mol L−1 on the ninth day. Under the same conditions in culture tubes (36 mm outer diameter), the biomass productivity was 2.8-fold greater than in the photobioreactor (0.125 m in diameter), but the lipid productivity was only 1.2-fold higher. Thus, the average low-light level in the photobioreactor actually increased the biomass specific lipid production compared to the culture tubes. A light-limited growth model closely agreed with the experimental profiles of biomass production, nitrogen consumption, and lipid production in the photobioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号